Numerical Methods for Conservation Laws
Title | Numerical Methods for Conservation Laws PDF eBook |
Author | LEVEQUE |
Publisher | Birkhäuser |
Pages | 221 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 3034851162 |
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Derivatives in Financial Markets with Stochastic Volatility
Title | Derivatives in Financial Markets with Stochastic Volatility PDF eBook |
Author | Jean-Pierre Fouque |
Publisher | Cambridge University Press |
Pages | 222 |
Release | 2000-07-03 |
Genre | Business & Economics |
ISBN | 9780521791632 |
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
American-Type Options
Title | American-Type Options PDF eBook |
Author | Dmitrii S. Silvestrov |
Publisher | Walter de Gruyter |
Pages | 520 |
Release | 2013-11-27 |
Genre | Mathematics |
ISBN | 3110329824 |
The book gives a systematical presentation of stochastic approximation methods for models of American-type options with general pay-off functions for discrete time Markov price processes. Advanced methods combining backward recurrence algorithms for computing of option rewards and general results on convergence of stochastic space skeleton and tree approximations for option rewards are applied to a variety of models of multivariate modulated Markov price processes. The principal novelty of presented results is based on consideration of multivariate modulated Markov price processes and general pay-off functions, which can depend not only on price but also an additional stochastic modulating index component, and use of minimal conditions of smoothness for transition probabilities and pay-off functions, compactness conditions for log-price processes and rate of growth conditions for pay-off functions. The book also contains an extended bibliography of works in the area. This book is the first volume of the comprehensive two volumes monograph. The second volume will present results on structural studies of optimal stopping domains, Monte Carlo based approximation reward algorithms, and convergence of American-type options for autoregressive and continuous time models, as well as results of the corresponding experimental studies.
Foundations of Quantization for Probability Distributions
Title | Foundations of Quantization for Probability Distributions PDF eBook |
Author | Siegfried Graf |
Publisher | Springer |
Pages | 238 |
Release | 2007-05-06 |
Genre | Mathematics |
ISBN | 3540455779 |
Due to the rapidly increasing need for methods of data compression, quantization has become a flourishing field in signal and image processing and information theory. The same techniques are also used in statistics (cluster analysis), pattern recognition, and operations research (optimal location of service centers). The book gives the first mathematically rigorous account of the fundamental theory underlying these applications. The emphasis is on the asymptotics of quantization errors for absolutely continuous and special classes of singular probabilities (surface measures, self-similar measures) presenting some new results for the first time. Written for researchers and graduate students in probability theory the monograph is of potential interest to all people working in the disciplines mentioned above.
The Numerical Solution of the American Option Pricing Problem
Title | The Numerical Solution of the American Option Pricing Problem PDF eBook |
Author | Carl Chiarella |
Publisher | World Scientific |
Pages | 223 |
Release | 2014-10-14 |
Genre | Options (Finance) |
ISBN | 9814452629 |
The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pricing, including the method of lines, the component wise splitting and the finite difference with PSOR. The other approach is the integral transform approach which includes Fourier or Fourier Cosine transforms. Written in a concise and systematic manner, Chiarella, Kang and Meyer explain and demonstrate the advantages and limitations of each of them based on their and their co-workers'' experiences with these approaches over the years. Contents: Introduction; The Merton and Heston Model for a Call; American Call Options under Jump-Diffusion Processes; American Option Prices under Stochastic Volatility and Jump-Diffusion Dynamics OCo The Transform Approach; Representation and Numerical Approximation of American Option Prices under Heston; Fourier Cosine Expansion Approach; A Numerical Approach to Pricing American Call Options under SVJD; Conclusion; Bibliography; Index; About the Authors. Readership: Post-graduates/ Researchers in finance and applied mathematics with interest in numerical methods for American option pricing; mathematicians/physicists doing applied research in option pricing. Key Features: Complete discussion of different numerical methods for American options; Able to handle stochastic volatility and/or jump diffusion dynamics; Able to produce hedge ratios efficiently and accurately"
Option Valuation Under Stochastic Volatility
Title | Option Valuation Under Stochastic Volatility PDF eBook |
Author | Alan L. Lewis |
Publisher | |
Pages | 372 |
Release | 2000 |
Genre | Business & Economics |
ISBN |
Numerical Solution Of The American Option Pricing Problem, The: Finite Difference And Transform Approaches
Title | Numerical Solution Of The American Option Pricing Problem, The: Finite Difference And Transform Approaches PDF eBook |
Author | Carl Chiarella |
Publisher | World Scientific |
Pages | 223 |
Release | 2014-10-14 |
Genre | Business & Economics |
ISBN | 9814452637 |
The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pricing, including the method of lines, the component wise splitting and the finite difference with PSOR. The other approach is the integral transform approach which includes Fourier or Fourier Cosine transforms. Written in a concise and systematic manner, Chiarella, Kang and Meyer explain and demonstrate the advantages and limitations of each of them based on their and their co-workers' experiences with these approaches over the years.