Derivatives in Financial Markets with Stochastic Volatility
Title | Derivatives in Financial Markets with Stochastic Volatility PDF eBook |
Author | Jean-Pierre Fouque |
Publisher | Cambridge University Press |
Pages | 222 |
Release | 2000-07-03 |
Genre | Business & Economics |
ISBN | 9780521791632 |
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Numerical Methods for Conservation Laws
Title | Numerical Methods for Conservation Laws PDF eBook |
Author | LEVEQUE |
Publisher | Birkhäuser |
Pages | 221 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 3034851162 |
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
The Heston Model and its Extensions in Matlab and C#
Title | The Heston Model and its Extensions in Matlab and C# PDF eBook |
Author | Fabrice D. Rouah |
Publisher | John Wiley & Sons |
Pages | 437 |
Release | 2013-08-01 |
Genre | Business & Economics |
ISBN | 1118695178 |
Tap into the power of the most popular stochastic volatility model for pricing equity derivatives Since its introduction in 1993, the Heston model has become a popular model for pricing equity derivatives, and the most popular stochastic volatility model in financial engineering. This vital resource provides a thorough derivation of the original model, and includes the most important extensions and refinements that have allowed the model to produce option prices that are more accurate and volatility surfaces that better reflect market conditions. The book's material is drawn from research papers and many of the models covered and the computer codes are unavailable from other sources. The book is light on theory and instead highlights the implementation of the models. All of the models found here have been coded in Matlab and C#. This reliable resource offers an understanding of how the original model was derived from Ricatti equations, and shows how to implement implied and local volatility, Fourier methods applied to the model, numerical integration schemes, parameter estimation, simulation schemes, American options, the Heston model with time-dependent parameters, finite difference methods for the Heston PDE, the Greeks, and the double Heston model. A groundbreaking book dedicated to the exploration of the Heston model—a popular model for pricing equity derivatives Includes a companion website, which explores the Heston model and its extensions all coded in Matlab and C# Written by Fabrice Douglas Rouah a quantitative analyst who specializes in financial modeling for derivatives for pricing and risk management Engaging and informative, this is the first book to deal exclusively with the Heston Model and includes code in Matlab and C# for pricing under the model, as well as code for parameter estimation, simulation, finite difference methods, American options, and more.
Option Valuation Under Stochastic Volatility
Title | Option Valuation Under Stochastic Volatility PDF eBook |
Author | Alan L. Lewis |
Publisher | |
Pages | 372 |
Release | 2000 |
Genre | Business & Economics |
ISBN |
Stochastic Volatility Modeling
Title | Stochastic Volatility Modeling PDF eBook |
Author | Lorenzo Bergomi |
Publisher | CRC Press |
Pages | 520 |
Release | 2015-12-16 |
Genre | Business & Economics |
ISBN | 1482244071 |
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
Option Valuation Under Stochastic Volatility II
Title | Option Valuation Under Stochastic Volatility II PDF eBook |
Author | Alan L. Lewis |
Publisher | |
Pages | 748 |
Release | 2016-05-12 |
Genre | |
ISBN | 9780967637211 |
This book is a sequel to the author's well-received "Option Valuation under Stochastic Volatility." It extends that work to jump-diffusions and many related topics in quantitative finance. Topics include spectral theory for jump-diffusions, boundary behavior for short-term interest rate models, modelling VIX options, inference theory, discrete dividends, and more. It provides approximately 750 pages of original research in 26 chapters, with 165 illustrations, Mathematica, and some C/C++ codes. The first 12 chapters (550 pages) are completely new. Also included are reprints of selected previous publications of the author for convenient reference. The book should interest both researchers and quantitatively-oriented investors and traders. First 12 chapters: Slow Reflection, Jump-Returns, & Short-term Interest Rates Spectral Theory for Jump-diffusions Joint Time Series Modelling of SPX and VIX Modelling VIX Options (and Futures) under Stochastic Volatility Stochastic Volatility as a Hidden Markov Model Continuous-time Inference: Mathematical Methods and Worked Examples A Closer Look at the Square-root and 3/2-model A Closer Look at the SABR Model Back to Basics: An Update on the Discrete Dividend Problem PDE Numerics without the Pain Exact Solution to Double Barrier Problems under a Class of Processes Advanced Smile Asymptotics: Geometry, Geodesics, and All That
PDE and Martingale Methods in Option Pricing
Title | PDE and Martingale Methods in Option Pricing PDF eBook |
Author | Andrea Pascucci |
Publisher | Springer Science & Business Media |
Pages | 727 |
Release | 2011-04-15 |
Genre | Mathematics |
ISBN | 8847017815 |
This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.