Alice and Bob Meet Banach
Title | Alice and Bob Meet Banach PDF eBook |
Author | Guillaume Aubrun |
Publisher | American Mathematical Society |
Pages | 439 |
Release | 2024-07-29 |
Genre | Mathematics |
ISBN | 1470477963 |
The quest to build a quantum computer is arguably one of the major scientific and technological challenges of the twenty-first century, and quantum information theory (QIT) provides the mathematical framework for that quest. Over the last dozen or so years, it has become clear that quantum information theory is closely linked to geometric functional analysis (Banach space theory, operator spaces, high-dimensional probability), a field also known as asymptotic geometric analysis (AGA). In a nutshell, asymptotic geometric analysis investigates quantitative properties of convex sets, or other geometric structures, and their approximate symmetries as the dimension becomes large. This makes it especially relevant to quantum theory, where systems consisting of just a few particles naturally lead to models whose dimension is in the thousands, or even in the billions. Alice and Bob Meet Banach is aimed at multiple audiences connected through their interest in the interface of QIT and AGA: at quantum information researchers who want to learn AGA or apply its tools; at mathematicians interested in learning QIT, or at least the part of QIT that is relevant to functional analysis/convex geometry/random matrix theory and related areas; and at beginning researchers in either field. Moreover, this user-friendly book contains numerous tables and explicit estimates, with reasonable constants when possible, which make it a useful reference even for established mathematicians generally familiar with the subject.
Alice and Bob Meet Banach
Title | Alice and Bob Meet Banach PDF eBook |
Author | Guillaume Aubrun |
Publisher | American Mathematical Soc. |
Pages | 442 |
Release | 2017-08-30 |
Genre | Mathematics |
ISBN | 1470434687 |
The quest to build a quantum computer is arguably one of the major scientific and technological challenges of the twenty-first century, and quantum information theory (QIT) provides the mathematical framework for that quest. Over the last dozen or so years, it has become clear that quantum information theory is closely linked to geometric functional analysis (Banach space theory, operator spaces, high-dimensional probability), a field also known as asymptotic geometric analysis (AGA). In a nutshell, asymptotic geometric analysis investigates quantitative properties of convex sets, or other geometric structures, and their approximate symmetries as the dimension becomes large. This makes it especially relevant to quantum theory, where systems consisting of just a few particles naturally lead to models whose dimension is in the thousands, or even in the billions. Alice and Bob Meet Banach is aimed at multiple audiences connected through their interest in the interface of QIT and AGA: at quantum information researchers who want to learn AGA or apply its tools; at mathematicians interested in learning QIT, or at least the part of QIT that is relevant to functional analysis/convex geometry/random matrix theory and related areas; and at beginning researchers in either field. Moreover, this user-friendly book contains numerous tables and explicit estimates, with reasonable constants when possible, which make it a useful reference even for established mathematicians generally familiar with the subject.
Convexity from the Geometric Point of View
Title | Convexity from the Geometric Point of View PDF eBook |
Author | Vitor Balestro |
Publisher | Springer Nature |
Pages | 1195 |
Release | |
Genre | |
ISBN | 3031505077 |
Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions
Title | Upper Bounds for Grothendieck Constants, Quantum Correlation Matrices and CCP Functions PDF eBook |
Author | Frank Oertel |
Publisher | Springer Nature |
Pages | 238 |
Release | |
Genre | |
ISBN | 3031572017 |
The Adams Spectral Sequence for Topological Modular Forms
Title | The Adams Spectral Sequence for Topological Modular Forms PDF eBook |
Author | Robert R. Bruner |
Publisher | American Mathematical Society |
Pages | 690 |
Release | 2021-12-23 |
Genre | Mathematics |
ISBN | 1470469588 |
The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The $H$-infinity ring structure of the sphere and of $tmf$ are used to determine many differentials and relations.
Model Theory of Operator Algebras
Title | Model Theory of Operator Algebras PDF eBook |
Author | Isaac Goldbring |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 498 |
Release | 2023-07-24 |
Genre | Mathematics |
ISBN | 3110768283 |
Continuous model theory is an extension of classical first order logic which is best suited for classes of structures which are endowed with a metric. Applications have grown considerably in the past decade. This book is dedicated to showing how the techniques of continuous model theory are used to study C*-algebras and von Neumann algebras. This book geared to researchers in both logic and functional analysis provides the first self-contained collection of articles surveying the many applications of continuous logic to operator algebras that have been obtained in the last 15 years.
Attractors Under Autonomous and Non-autonomous Perturbations
Title | Attractors Under Autonomous and Non-autonomous Perturbations PDF eBook |
Author | Matheus C. Bortolan |
Publisher | American Mathematical Soc. |
Pages | 259 |
Release | 2020-05-29 |
Genre | Education |
ISBN | 1470453088 |
This book provides a comprehensive study of how attractors behave under perturbations for both autonomous and non-autonomous problems. Furthermore, the forward asymptotics of non-autonomous dynamical systems is presented here for the first time in a unified manner. When modelling real world phenomena imprecisions are unavoidable. On the other hand, it is paramount that mathematical models reflect the modelled phenomenon, in spite of unimportant neglectable influences discounted by simplifications, small errors introduced by empirical laws or measurements, among others. The authors deal with this issue by investigating the permanence of dynamical structures and continuity properties of the attractor. This is done in both the autonomous (time independent) and non-autonomous (time dependent) framework in four distinct levels of approximation: the upper semicontinuity, lower semicontinuity, topological structural stability and geometrical structural stability. This book is aimed at graduate students and researchers interested in dissipative dynamical systems and stability theory, and requires only a basic background in metric spaces, functional analysis and, for the applications, techniques of ordinary and partial differential equations.