Reinforcement Learning

Reinforcement Learning
Title Reinforcement Learning PDF eBook
Author Marco Wiering
Publisher Springer Science & Business Media
Pages 653
Release 2012-03-05
Genre Technology & Engineering
ISBN 3642276458

Download Reinforcement Learning Book in PDF, Epub and Kindle

Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

Algorithmic Decision Theory

Algorithmic Decision Theory
Title Algorithmic Decision Theory PDF eBook
Author Patrice Perny
Publisher Springer
Pages 451
Release 2013-10-28
Genre Computers
ISBN 364241575X

Download Algorithmic Decision Theory Book in PDF, Epub and Kindle

This book constitutes the thoroughly refereed conference proceedings of the Third International Conference on Algorithmic Decision Theory, ADT 2013, held in November 2013 in Bruxelles, Belgium. The 33 revised full papers presented were carefully selected from more than 70 submissions, covering preferences in reasoning and decision making, uncertainty and robustness in decision making, multi-criteria decision analysis and optimization, collective decision making, learning and knowledge extraction for decision support.

A Concise Introduction to Decentralized POMDPs

A Concise Introduction to Decentralized POMDPs
Title A Concise Introduction to Decentralized POMDPs PDF eBook
Author Frans A. Oliehoek
Publisher Springer
Pages 146
Release 2016-06-03
Genre Computers
ISBN 3319289292

Download A Concise Introduction to Decentralized POMDPs Book in PDF, Epub and Kindle

This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research.

Markov Decision Processes in Artificial Intelligence

Markov Decision Processes in Artificial Intelligence
Title Markov Decision Processes in Artificial Intelligence PDF eBook
Author Olivier Sigaud
Publisher John Wiley & Sons
Pages 367
Release 2013-03-04
Genre Technology & Engineering
ISBN 1118620100

Download Markov Decision Processes in Artificial Intelligence Book in PDF, Epub and Kindle

Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as reinforcement learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in artificial intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, reinforcement learning, partially observable MDPs, Markov games and the use of non-classical criteria). It then presents more advanced research trends in the field and gives some concrete examples using illustrative real life applications.

Symbolic and Quantitative Approaches to Reasoning with Uncertainty

Symbolic and Quantitative Approaches to Reasoning with Uncertainty
Title Symbolic and Quantitative Approaches to Reasoning with Uncertainty PDF eBook
Author Salem Benferhat
Publisher Springer
Pages 832
Release 2003-06-30
Genre Computers
ISBN 3540446524

Download Symbolic and Quantitative Approaches to Reasoning with Uncertainty Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 6th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2001, held in Toulouse, France in September 2001. The 68 revised full papers presented together with three invited papers were carefully reviewed and selected from over a hundred submissions. The book offers topical sections on decision theory, partially observable Markov decision processes, decision-making, coherent probabilities, Bayesian networks, learning causal networks, graphical representation of uncertainty, imprecise probabilities, belief functions, fuzzy sets and rough sets, possibility theory, merging, belief revision and preferences, inconsistency handling, default logic, logic programming, etc.

Partially Observed Markov Decision Processes

Partially Observed Markov Decision Processes
Title Partially Observed Markov Decision Processes PDF eBook
Author Vikram Krishnamurthy
Publisher Cambridge University Press
Pages 491
Release 2016-03-21
Genre Mathematics
ISBN 1107134609

Download Partially Observed Markov Decision Processes Book in PDF, Epub and Kindle

This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.

Stochastic Models in Operations Research: Stochastic optimization

Stochastic Models in Operations Research: Stochastic optimization
Title Stochastic Models in Operations Research: Stochastic optimization PDF eBook
Author Daniel P. Heyman
Publisher Courier Corporation
Pages 580
Release 2004-01-01
Genre Mathematics
ISBN 9780486432601

Download Stochastic Models in Operations Research: Stochastic optimization Book in PDF, Epub and Kindle

This two-volume set of texts explores the central facts and ideas of stochastic processes, illustrating their use in models based on applied and theoretical investigations. They demonstrate the interdependence of three areas of study that usually receive separate treatments: stochastic processes, operating characteristics of stochastic systems, and stochastic optimization. Comprehensive in its scope, they emphasize the practical importance, intellectual stimulation, and mathematical elegance of stochastic models and are intended primarily as graduate-level texts.