Mathematics for Machine Learning

Mathematics for Machine Learning
Title Mathematics for Machine Learning PDF eBook
Author Marc Peter Deisenroth
Publisher Cambridge University Press
Pages 392
Release 2020-04-23
Genre Computers
ISBN 1108569323

Download Mathematics for Machine Learning Book in PDF, Epub and Kindle

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Machine Learning

Machine Learning
Title Machine Learning PDF eBook
Author Stephen Marsland
Publisher CRC Press
Pages 407
Release 2011-03-23
Genre Business & Economics
ISBN 1420067192

Download Machine Learning Book in PDF, Epub and Kindle

Traditional books on machine learning can be divided into two groups- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but

Algorithmic Aspects of Machine Learning

Algorithmic Aspects of Machine Learning
Title Algorithmic Aspects of Machine Learning PDF eBook
Author Ankur Moitra
Publisher Cambridge University Press
Pages 161
Release 2018-09-27
Genre Computers
ISBN 1107184584

Download Algorithmic Aspects of Machine Learning Book in PDF, Epub and Kindle

Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.

Probability for Machine Learning

Probability for Machine Learning
Title Probability for Machine Learning PDF eBook
Author Jason Brownlee
Publisher Machine Learning Mastery
Pages 319
Release 2019-09-24
Genre Computers
ISBN

Download Probability for Machine Learning Book in PDF, Epub and Kindle

Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.

Understanding Machine Learning

Understanding Machine Learning
Title Understanding Machine Learning PDF eBook
Author Shai Shalev-Shwartz
Publisher Cambridge University Press
Pages 415
Release 2014-05-19
Genre Computers
ISBN 1107057132

Download Understanding Machine Learning Book in PDF, Epub and Kindle

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Algorithmic Mathematics in Machine Learning

Algorithmic Mathematics in Machine Learning
Title Algorithmic Mathematics in Machine Learning PDF eBook
Author Bastian Bohn
Publisher SIAM
Pages 238
Release 2024-04-08
Genre Computers
ISBN 1611977886

Download Algorithmic Mathematics in Machine Learning Book in PDF, Epub and Kindle

This unique book explores several well-known machine learning and data analysis algorithms from a mathematical and programming perspective. The authors present machine learning methods, review the underlying mathematics, and provide programming exercises to deepen the reader’s understanding; accompany application areas with exercises that explore the unique characteristics of real-world data sets (e.g., image data for pedestrian detection, biological cell data); and provide new terminology and background information on mathematical concepts, as well as exercises, in “info-boxes” throughout the text. Algorithmic Mathematics in Machine Learning is intended for mathematicians, computer scientists, and practitioners who have a basic mathematical background in analysis and linear algebra but little or no knowledge of machine learning and related algorithms. Researchers in the natural sciences and engineers interested in acquiring the mathematics needed to apply the most popular machine learning algorithms will also find this book useful. This book is appropriate for a practical lab or basic lecture course on machine learning within a mathematics curriculum.

Machine Learning for Algorithmic Trading

Machine Learning for Algorithmic Trading
Title Machine Learning for Algorithmic Trading PDF eBook
Author Stefan Jansen
Publisher Packt Publishing Ltd
Pages 822
Release 2020-07-31
Genre Business & Economics
ISBN 1839216786

Download Machine Learning for Algorithmic Trading Book in PDF, Epub and Kindle

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.