Algorithmic Learning in a Random World
Title | Algorithmic Learning in a Random World PDF eBook |
Author | Vladimir Vovk |
Publisher | Springer Science & Business Media |
Pages | 344 |
Release | 2005-03-22 |
Genre | Computers |
ISBN | 9780387001524 |
Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.
Algorithmic Learning
Title | Algorithmic Learning PDF eBook |
Author | Alan Hutchinson |
Publisher | Oxford University Press, USA |
Pages | 472 |
Release | 1994 |
Genre | Computers |
ISBN |
Machine learning is a rapidly changing field within artificial intelligence, as more algorithms are identified and a theory of which algorithm will suit which purpose emerges. Artificial Learning provides a comprehensive introduction to all aspects of the subject and will be both aninvaluable text for students and a reference for practitioners seeking an up-to-date review.
Algorithmic Aspects of Machine Learning
Title | Algorithmic Aspects of Machine Learning PDF eBook |
Author | Ankur Moitra |
Publisher | Cambridge University Press |
Pages | 161 |
Release | 2018-09-27 |
Genre | Computers |
ISBN | 1107184584 |
Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.
Machine Learning
Title | Machine Learning PDF eBook |
Author | Stephen Marsland |
Publisher | CRC Press |
Pages | 407 |
Release | 2011-03-23 |
Genre | Business & Economics |
ISBN | 1420067192 |
Traditional books on machine learning can be divided into two groups- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but
Algorithmic Learning Theory
Title | Algorithmic Learning Theory PDF eBook |
Author | José L. Balcázar |
Publisher | Springer |
Pages | 405 |
Release | 2006-10-05 |
Genre | Computers |
ISBN | 3540466509 |
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.
Machine Learning for Algorithmic Trading
Title | Machine Learning for Algorithmic Trading PDF eBook |
Author | Stefan Jansen |
Publisher | Packt Publishing Ltd |
Pages | 822 |
Release | 2020-07-31 |
Genre | Business & Economics |
ISBN | 1839216786 |
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Algorithmic Learning Theory
Title | Algorithmic Learning Theory PDF eBook |
Author | Setsuo Arikawa |
Publisher | Springer Science & Business Media |
Pages | 600 |
Release | 1994-09-28 |
Genre | Computers |
ISBN | 9783540585206 |
This volume presents the proceedings of the Fourth International Workshop on Analogical and Inductive Inference (AII '94) and the Fifth International Workshop on Algorithmic Learning Theory (ALT '94), held jointly at Reinhardsbrunn Castle, Germany in October 1994. (In future the AII and ALT workshops will be amalgamated and held under the single title of Algorithmic Learning Theory.) The book contains revised versions of 45 papers on all current aspects of computational learning theory; in particular, algorithmic learning, machine learning, analogical inference, inductive logic, case-based reasoning, and formal language learning are addressed.