Algorithmic Aspects of Graph Connectivity
Title | Algorithmic Aspects of Graph Connectivity PDF eBook |
Author | Hiroshi Nagamochi |
Publisher | Cambridge University Press |
Pages | 391 |
Release | 2019-05-16 |
Genre | Computers |
ISBN | 9781108735490 |
Algorithmic Aspects of Graph Connectivity is the first comprehensive book on this central notion in graph and network theory, emphasizing its algorithmic aspects. Because of its wide applications in the fields of communication, transportation, and production, graph connectivity has made tremendous algorithmic progress under the influence of the theory of complexity and algorithms in modern computer science. The book contains various definitions of connectivity, including edge-connectivity and vertex-connectivity, and their ramifications, as well as related topics such as flows and cuts. The authors comprehensively discuss new concepts and algorithms that allow for quicker and more efficient computing, such as maximum adjacency ordering of vertices. Covering both basic definitions and advanced topics, this book can be used as a textbook in graduate courses in mathematical sciences, such as discrete mathematics, combinatorics, and operations research, and as a reference book for specialists in discrete mathematics and its applications.
Algorithmic Graph Theory
Title | Algorithmic Graph Theory PDF eBook |
Author | Alan Gibbons |
Publisher | Cambridge University Press |
Pages | 280 |
Release | 1985-06-27 |
Genre | Computers |
ISBN | 9780521288811 |
An introduction to pure and applied graph theory with an emphasis on algorithms and their complexity.
Complex Networks
Title | Complex Networks PDF eBook |
Author | Vito Latora |
Publisher | Cambridge University Press |
Pages | 585 |
Release | 2017-09-28 |
Genre | Science |
ISBN | 1108298680 |
Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, mathematics, engineering, biology, neuroscience and the social sciences.
Graphs, Networks and Algorithms
Title | Graphs, Networks and Algorithms PDF eBook |
Author | Dieter Jungnickel |
Publisher | Springer Science & Business Media |
Pages | 597 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 3662038226 |
Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed
Graph Mining
Title | Graph Mining PDF eBook |
Author | Deepayan Chakrabarti |
Publisher | Morgan & Claypool Publishers |
Pages | 209 |
Release | 2012-10-01 |
Genre | Computers |
ISBN | 160845116X |
What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions
Graph Algorithms
Title | Graph Algorithms PDF eBook |
Author | Mark Needham |
Publisher | "O'Reilly Media, Inc." |
Pages | 297 |
Release | 2019-05-16 |
Genre | Computers |
ISBN | 1492047635 |
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark
Algorithmic Aspects in Information and Management
Title | Algorithmic Aspects in Information and Management PDF eBook |
Author | Ming-Yang Kao |
Publisher | Springer |
Pages | 439 |
Release | 2007-06-26 |
Genre | Computers |
ISBN | 3540728708 |
This book constitutes the refereed proceedings of the Third International Conference on Algorithmic Aspects in Information and Management, AAIM 2007, held in Portland, OR, USA in June 2007. It covers graph algorithms, combinatorics, scheduling, graph theory, network algorithms, game theory, option theory, computational geometry, graph theory and combinatorics, as well as networks and data.