Algebraic L-theory and Topological Manifolds
Title | Algebraic L-theory and Topological Manifolds PDF eBook |
Author | Andrew Ranicki |
Publisher | Cambridge University Press |
Pages | 372 |
Release | 1992-12-10 |
Genre | Mathematics |
ISBN | 9780521420242 |
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.
An Introduction to Manifolds
Title | An Introduction to Manifolds PDF eBook |
Author | Loring W. Tu |
Publisher | Springer Science & Business Media |
Pages | 426 |
Release | 2010-10-05 |
Genre | Mathematics |
ISBN | 1441974008 |
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Algebraic and Geometric Surgery
Title | Algebraic and Geometric Surgery PDF eBook |
Author | Andrew Ranicki |
Publisher | Oxford University Press |
Pages | 396 |
Release | 2002 |
Genre | Mathematics |
ISBN | 9780198509240 |
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Lower K- and L-theory
Title | Lower K- and L-theory PDF eBook |
Author | Andrew Ranicki |
Publisher | Cambridge University Press |
Pages | 186 |
Release | 1992-05-21 |
Genre | Mathematics |
ISBN | 0521438012 |
This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author.
Introduction to Topological Manifolds
Title | Introduction to Topological Manifolds PDF eBook |
Author | John M. Lee |
Publisher | Springer Science & Business Media |
Pages | 395 |
Release | 2006-04-06 |
Genre | Mathematics |
ISBN | 038722727X |
Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.
A Concise Course in Algebraic Topology
Title | A Concise Course in Algebraic Topology PDF eBook |
Author | J. P. May |
Publisher | University of Chicago Press |
Pages | 262 |
Release | 1999-09 |
Genre | Mathematics |
ISBN | 9780226511832 |
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Lecture Notes in Algebraic Topology
Title | Lecture Notes in Algebraic Topology PDF eBook |
Author | James F. Davis |
Publisher | American Mathematical Society |
Pages | 385 |
Release | 2023-05-22 |
Genre | Mathematics |
ISBN | 1470473682 |
The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.