Algebraic Groups and Number Theory
Title | Algebraic Groups and Number Theory PDF eBook |
Author | Vladimir Platonov |
Publisher | Academic Press |
Pages | 629 |
Release | 1993-12-07 |
Genre | Mathematics |
ISBN | 0080874592 |
This milestone work on the arithmetic theory of linear algebraic groups is now available in English for the first time. Algebraic Groups and Number Theory provides the first systematic exposition in mathematical literature of the junction of group theory, algebraic geometry, and number theory. The exposition of the topic is built on a synthesis of methods from algebraic geometry, number theory, analysis, and topology, and the result is a systematic overview ofalmost all of the major results of the arithmetic theory of algebraic groups obtained to date.
Algebraic Groups
Title | Algebraic Groups PDF eBook |
Author | J. S. Milne |
Publisher | Cambridge University Press |
Pages | 665 |
Release | 2017-09-21 |
Genre | Mathematics |
ISBN | 1107167485 |
Comprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.
Linear Algebraic Groups
Title | Linear Algebraic Groups PDF eBook |
Author | T.A. Springer |
Publisher | Springer Science & Business Media |
Pages | 347 |
Release | 2010-10-12 |
Genre | Mathematics |
ISBN | 0817648402 |
The first edition of this book presented the theory of linear algebraic groups over an algebraically closed field. The second edition, thoroughly revised and expanded, extends the theory over arbitrary fields, which are not necessarily algebraically closed. It thus represents a higher aim. As in the first edition, the book includes a self-contained treatment of the prerequisites from algebraic geometry and commutative algebra, as well as basic results on reductive groups. As a result, the first part of the book can well serve as a text for an introductory graduate course on linear algebraic groups.
Adeles and Algebraic Groups
Title | Adeles and Algebraic Groups PDF eBook |
Author | A. Weil |
Publisher | Springer Science & Business Media |
Pages | 137 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1468491563 |
This volume contains the original lecture notes presented by A. Weil in which the concept of adeles was first introduced, in conjunction with various aspects of C.L. Siegel’s work on quadratic forms. Serving as an introduction to the subject, these notes may also provide stimulation for further research.
An Introduction to Algebraic Geometry and Algebraic Groups
Title | An Introduction to Algebraic Geometry and Algebraic Groups PDF eBook |
Author | Meinolf Geck |
Publisher | Oxford University Press |
Pages | 321 |
Release | 2013-03-14 |
Genre | Mathematics |
ISBN | 019967616X |
An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.
Representations of Algebraic Groups
Title | Representations of Algebraic Groups PDF eBook |
Author | Jens Carsten Jantzen |
Publisher | American Mathematical Soc. |
Pages | 594 |
Release | 2003 |
Genre | Mathematics |
ISBN | 082184377X |
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.
Linear Algebraic Groups
Title | Linear Algebraic Groups PDF eBook |
Author | Armand Borel |
Publisher | Springer Science & Business Media |
Pages | 301 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461209412 |
This revised, enlarged edition of Linear Algebraic Groups (1969) starts by presenting foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. It then turns to solvable groups, general properties of linear algebraic groups, and Chevally’s structure theory of reductive groups over algebraically closed groundfields. It closes with a focus on rationality questions over non-algebraically closed fields.