Algebraic Geometry: Further study of schemes
Title | Algebraic Geometry: Further study of schemes PDF eBook |
Author | 健爾·上野 |
Publisher | American Mathematical Soc. |
Pages | 222 |
Release | 2003 |
Genre | Mathematics |
ISBN | 9780821813584 |
This is the third part of the textbook on algebraic geometry by Kenji Ueno (the first two parts were published by the AMS as Volumes 185 and 197 of this series). Here the author presents the theory of schemes and sheaves beyond introductory notions, with the goal of studying properties of schemes and coherent sheaves necessary for full development of modern algebraic geometry. The main topics discussed in the book include dimension theory, flat and proper morphisms, regular schemes, smooth morphisms, completion and Zariski's main theorem. The author also presents the theory of algebraic curves and their Jacobians and the relation between algebraic and analytic geometry, including Kodaira's Vanishing Theorem. The book contains numerous exercises and problems with solutions, which makes it (together with two previous parts) appropriate for a graduate course on algebraic geometry or for self-study.
Algebraic Geometry 1
Title | Algebraic Geometry 1 PDF eBook |
Author | Kenji Ueno |
Publisher | American Mathematical Soc. |
Pages | 178 |
Release | 1999 |
Genre | Mathematics |
ISBN | 0821808621 |
By studying algebraic varieties over a field, this book demonstrates how the notion of schemes is necessary in algebraic geometry. It gives a definition of schemes and describes some of their elementary properties.
The Geometry of Schemes
Title | The Geometry of Schemes PDF eBook |
Author | David Eisenbud |
Publisher | Springer Science & Business Media |
Pages | 265 |
Release | 2006-04-06 |
Genre | Mathematics |
ISBN | 0387226397 |
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Algebraic Geometry I: Schemes
Title | Algebraic Geometry I: Schemes PDF eBook |
Author | Ulrich Görtz |
Publisher | Springer Nature |
Pages | 634 |
Release | 2020-07-27 |
Genre | Mathematics |
ISBN | 3658307331 |
This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.
Algebraic Geometry
Title | Algebraic Geometry PDF eBook |
Author | Ulrich Görtz |
Publisher | Springer Science & Business Media |
Pages | 622 |
Release | 2010-08-06 |
Genre | Mathematics |
ISBN | 3834897221 |
This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.
Algebraic Geometry 2
Title | Algebraic Geometry 2 PDF eBook |
Author | Kenji Ueno |
Publisher | American Mathematical Soc. |
Pages | 196 |
Release | 1999 |
Genre | Mathematics |
ISBN | 9780821813577 |
Algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes was explained in Algebraic Geometry 1: From Algebraic Varieties to Schemes. In this volume, the author turns to the theory of sheaves and their cohomology. A sheaf is a way of keeping track of local information defined on a topological space, such as the local holomorphic functions on a complex manifold or the local sections of a vector bundle. To study schemes, it is useful to study the sheaves defined on them, especially the coherent and quasicoherent sheaves.
Basic Algebraic Geometry 2
Title | Basic Algebraic Geometry 2 PDF eBook |
Author | Igor Rostislavovich Shafarevich |
Publisher | Springer Science & Business Media |
Pages | 292 |
Release | 1994 |
Genre | Mathematics |
ISBN | 9783540575542 |
The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.