Algebraic Cobordism

Algebraic Cobordism
Title Algebraic Cobordism PDF eBook
Author Marc Levine
Publisher Springer Science & Business Media
Pages 252
Release 2007-02-23
Genre Mathematics
ISBN 3540368248

Download Algebraic Cobordism Book in PDF, Epub and Kindle

Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. The book also contains some examples of computations and applications.

Algebraic Cobordism and $K$-Theory

Algebraic Cobordism and $K$-Theory
Title Algebraic Cobordism and $K$-Theory PDF eBook
Author Victor Percy Snaith
Publisher American Mathematical Soc.
Pages 164
Release 1979
Genre Cobordism theory
ISBN 0821822217

Download Algebraic Cobordism and $K$-Theory Book in PDF, Epub and Kindle

A decomposition is given of the S-type of the classifying spaces of the classical groups. This decomposition is in terms of Thom spaces and by means of it cobordism groups are embedded into the stable homotopy of classifying spaces. This is used to show that each of the classical cobordism theories, and also complex K-theory, is obtainable as a localization of the stable homotopy ring of a classifying space.

Complex Cobordism and Stable Homotopy Groups of Spheres

Complex Cobordism and Stable Homotopy Groups of Spheres
Title Complex Cobordism and Stable Homotopy Groups of Spheres PDF eBook
Author Douglas C. Ravenel
Publisher American Mathematical Soc.
Pages 418
Release 2003-11-25
Genre Mathematics
ISBN 082182967X

Download Complex Cobordism and Stable Homotopy Groups of Spheres Book in PDF, Epub and Kindle

Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.

On Thom Spectra, Orientability, and Cobordism

On Thom Spectra, Orientability, and Cobordism
Title On Thom Spectra, Orientability, and Cobordism PDF eBook
Author Yu. B. Rudyak
Publisher Springer Science & Business Media
Pages 593
Release 2007-12-12
Genre Mathematics
ISBN 3540777512

Download On Thom Spectra, Orientability, and Cobordism Book in PDF, Epub and Kindle

Rudyak’s groundbreaking monograph is the first guide on the subject of cobordism since Stong's influential notes of a generation ago. It concentrates on Thom spaces (spectra), orientability theory and (co)bordism theory (including (co)bordism with singularities and, in particular, Morava K-theories). These are all framed by (co)homology theories and spectra. The author has also performed a service to the history of science in this book, giving detailed attributions.

Notes on Cobordism Theory

Notes on Cobordism Theory
Title Notes on Cobordism Theory PDF eBook
Author Robert E. Stong
Publisher Princeton University Press
Pages 421
Release 2015-12-08
Genre Mathematics
ISBN 1400879973

Download Notes on Cobordism Theory Book in PDF, Epub and Kindle

These notes contain the first complete treatment of cobordism, a topic that has become increasingly important in the past ten years. The subject is fully developed and the latest theories are treated. Originally published in 1968. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Schubert Calculus and Its Applications in Combinatorics and Representation Theory

Schubert Calculus and Its Applications in Combinatorics and Representation Theory
Title Schubert Calculus and Its Applications in Combinatorics and Representation Theory PDF eBook
Author Jianxun Hu
Publisher Springer Nature
Pages 367
Release 2020-10-24
Genre Mathematics
ISBN 9811574510

Download Schubert Calculus and Its Applications in Combinatorics and Representation Theory Book in PDF, Epub and Kindle

This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.

Algebraic Topology. Waterloo 1978

Algebraic Topology. Waterloo 1978
Title Algebraic Topology. Waterloo 1978 PDF eBook
Author P. Hoffman
Publisher Springer
Pages 668
Release 2006-11-15
Genre Mathematics
ISBN 3540350098

Download Algebraic Topology. Waterloo 1978 Book in PDF, Epub and Kindle