Algebraic and Computational Aspects of Real Tensor Ranks

Algebraic and Computational Aspects of Real Tensor Ranks
Title Algebraic and Computational Aspects of Real Tensor Ranks PDF eBook
Author Toshio Sakata
Publisher Springer
Pages 112
Release 2016-03-18
Genre Mathematics
ISBN 4431554599

Download Algebraic and Computational Aspects of Real Tensor Ranks Book in PDF, Epub and Kindle

This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through simultaneous singular value decompositions.

High-Performance Tensor Computations in Scientific Computing and Data Science

High-Performance Tensor Computations in Scientific Computing and Data Science
Title High-Performance Tensor Computations in Scientific Computing and Data Science PDF eBook
Author Edoardo Angelo Di Napoli
Publisher Frontiers Media SA
Pages 192
Release 2022-11-08
Genre Science
ISBN 2832504256

Download High-Performance Tensor Computations in Scientific Computing and Data Science Book in PDF, Epub and Kindle

Tensor Numerical Methods in Scientific Computing

Tensor Numerical Methods in Scientific Computing
Title Tensor Numerical Methods in Scientific Computing PDF eBook
Author Boris N. Khoromskij
Publisher Walter de Gruyter GmbH & Co KG
Pages 475
Release 2018-06-11
Genre Mathematics
ISBN 3110391392

Download Tensor Numerical Methods in Scientific Computing Book in PDF, Epub and Kindle

The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations

Algebraic Curves and Their Applications

Algebraic Curves and Their Applications
Title Algebraic Curves and Their Applications PDF eBook
Author Lubjana Beshaj
Publisher American Mathematical Soc.
Pages 358
Release 2019-02-26
Genre Mathematics
ISBN 1470442477

Download Algebraic Curves and Their Applications Book in PDF, Epub and Kindle

This volume contains a collection of papers on algebraic curves and their applications. While algebraic curves traditionally have provided a path toward modern algebraic geometry, they also provide many applications in number theory, computer security and cryptography, coding theory, differential equations, and more. Papers cover topics such as the rational torsion points of elliptic curves, arithmetic statistics in the moduli space of curves, combinatorial descriptions of semistable hyperelliptic curves over local fields, heights on weighted projective spaces, automorphism groups of curves, hyperelliptic curves, dessins d'enfants, applications to Painlevé equations, descent on real algebraic varieties, quadratic residue codes based on hyperelliptic curves, and Abelian varieties and cryptography. This book will be a valuable resource for people interested in algebraic curves and their connections to other branches of mathematics.

Invitation to Nonlinear Algebra

Invitation to Nonlinear Algebra
Title Invitation to Nonlinear Algebra PDF eBook
Author Mateusz Michałek
Publisher American Mathematical Society
Pages 226
Release 2021-03-05
Genre Mathematics
ISBN 1470453673

Download Invitation to Nonlinear Algebra Book in PDF, Epub and Kindle

Nonlinear algebra provides modern mathematical tools to address challenges arising in the sciences and engineering. It is useful everywhere, where polynomials appear: in particular, data and computational sciences, statistics, physics, optimization. The book offers an invitation to this broad and fast-developing area. It is not an extensive encyclopedia of known results, but rather a first introduction to the subject, allowing the reader to enter into more advanced topics. It was designed as the next step after linear algebra and well before abstract algebraic geometry. The book presents both classical topics—like the Nullstellensatz and primary decomposition—and more modern ones—like tropical geometry and semidefinite programming. The focus lies on interactions and applications. Each of the thirteen chapters introduces fundamental concepts. The book may be used for a one-semester course, and the over 200 exercises will help the readers to deepen their understanding of the subject.

Logic and Algebraic Structures in Quantum Computing

Logic and Algebraic Structures in Quantum Computing
Title Logic and Algebraic Structures in Quantum Computing PDF eBook
Author Jennifer Chubb
Publisher Cambridge University Press
Pages 355
Release 2016-02-26
Genre Mathematics
ISBN 1316654060

Download Logic and Algebraic Structures in Quantum Computing Book in PDF, Epub and Kindle

Arising from a special session held at the 2010 North American Annual Meeting of the Association for Symbolic Logic, this volume is an international cross-disciplinary collaboration with contributions from leading experts exploring connections across their respective fields. Themes range from philosophical examination of the foundations of physics and quantum logic, to exploitations of the methods and structures of operator theory, category theory, and knot theory in an effort to gain insight into the fundamental questions in quantum theory and logic. The book will appeal to researchers and students working in related fields, including logicians, mathematicians, computer scientists, and physicists. A brief introduction provides essential background on quantum mechanics and category theory, which, together with a thematic selection of articles, may also serve as the basic material for a graduate course or seminar.

Tensors: Geometry and Applications

Tensors: Geometry and Applications
Title Tensors: Geometry and Applications PDF eBook
Author J. M. Landsberg
Publisher American Mathematical Soc.
Pages 464
Release 2011-12-14
Genre Mathematics
ISBN 0821869078

Download Tensors: Geometry and Applications Book in PDF, Epub and Kindle

Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.