Advanced Analytic Number Theory: L-Functions

Advanced Analytic Number Theory: L-Functions
Title Advanced Analytic Number Theory: L-Functions PDF eBook
Author Carlos J. Moreno
Publisher American Mathematical Soc.
Pages 313
Release 2005
Genre Mathematics
ISBN 0821842668

Download Advanced Analytic Number Theory: L-Functions Book in PDF, Epub and Kindle

Since the pioneering work of Euler, Dirichlet, and Riemann, the analytic properties of L-functions have been used to study the distribution of prime numbers. With the advent of the Langlands Program, L-functions have assumed a greater role in the study of the interplay between Diophantine questions about primes and representation theoretic properties of Galois representations. This book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the general linear group. In addition to establishing functional equations, growth estimates, and non-vanishing theorems, a thorough presentation of the explicit formulas of Riemann type in the context of Artin-Hecke and automorphic L-functions is also given. The survey is aimed at mathematicians and graduate students who want to learn about the modern analytic theory of L-functions and their applications in number theory and in the theory of automorphic representations. The requirements for a profitable study of this monograph are a knowledge of basic number theory and the rudiments of abstract harmonic analysis on locally compact abelian groups.

Zeta and L-Functions of Varieties and Motives

Zeta and L-Functions of Varieties and Motives
Title Zeta and L-Functions of Varieties and Motives PDF eBook
Author Bruno Kahn
Publisher Cambridge University Press
Pages 217
Release 2020-05-07
Genre Mathematics
ISBN 1108574912

Download Zeta and L-Functions of Varieties and Motives Book in PDF, Epub and Kindle

The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.

Zeta Functions of Graphs

Zeta Functions of Graphs
Title Zeta Functions of Graphs PDF eBook
Author Audrey Terras
Publisher Cambridge University Press
Pages 253
Release 2010-11-18
Genre Mathematics
ISBN 1139491784

Download Zeta Functions of Graphs Book in PDF, Epub and Kindle

Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which may be false) and prime number theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalize Cayley and Schreier graphs. Then non-isomorphic simple graphs with the same zeta are produced, showing you cannot hear the shape of a graph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory, plus expander/Ramanujan graphs of interest in computer science. Created for beginning graduate students, the book will also appeal to researchers. Many well-chosen illustrations and exercises, both theoretical and computer-based, are included throughout.

Fourier Analysis on Number Fields

Fourier Analysis on Number Fields
Title Fourier Analysis on Number Fields PDF eBook
Author Dinakar Ramakrishnan
Publisher Springer Science & Business Media
Pages 372
Release 2013-04-17
Genre Mathematics
ISBN 1475730853

Download Fourier Analysis on Number Fields Book in PDF, Epub and Kindle

A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.

Zeta Functions in Algebra and Geometry

Zeta Functions in Algebra and Geometry
Title Zeta Functions in Algebra and Geometry PDF eBook
Author Antonio Campillo
Publisher American Mathematical Soc.
Pages 362
Release 2012
Genre Mathematics
ISBN 0821869000

Download Zeta Functions in Algebra and Geometry Book in PDF, Epub and Kindle

Contains the proceedings of the Second International Workshop on Zeta Functions in Algebra and Geometry held May 3-7, 2010 at the Universitat de les Illes Balears, Palma de Mallorca, Spain. The conference focused on the following topics: arithmetic and geometric aspects of local, topological, and motivic zeta functions, Poincare series of valuations, zeta functions of groups, rings, and representations, prehomogeneous vector spaces and their zeta functions, and height zeta functions.

Automorphic Forms on GL (3,TR)

Automorphic Forms on GL (3,TR)
Title Automorphic Forms on GL (3,TR) PDF eBook
Author D. Bump
Publisher Springer
Pages 196
Release 2006-12-08
Genre Mathematics
ISBN 3540390553

Download Automorphic Forms on GL (3,TR) Book in PDF, Epub and Kindle

Analytic Properties of Automorphic L-Functions

Analytic Properties of Automorphic L-Functions
Title Analytic Properties of Automorphic L-Functions PDF eBook
Author Stephen Gelbart
Publisher Academic Press
Pages 142
Release 2014-07-14
Genre Mathematics
ISBN 1483261034

Download Analytic Properties of Automorphic L-Functions Book in PDF, Epub and Kindle

Analytic Properties of Automorphic L-Functions is a three-chapter text that covers considerable research works on the automorphic L-functions attached by Langlands to reductive algebraic groups. Chapter I focuses on the analysis of Jacquet-Langlands methods and the Einstein series and Langlands’ so-called “Euler products . This chapter explains how local and global zeta-integrals are used to prove the analytic continuation and functional equations of the automorphic L-functions attached to GL(2). Chapter II deals with the developments and refinements of the zeta-inetgrals for GL(n). Chapter III describes the results for the L-functions L (s, ?, r), which are considered in the constant terms of Einstein series for some quasisplit reductive group. This book will be of value to undergraduate and graduate mathematics students.