Algebra and Number Theory

Algebra and Number Theory
Title Algebra and Number Theory PDF eBook
Author Martyn R. Dixon
Publisher John Wiley & Sons
Pages 544
Release 2011-07-15
Genre Mathematics
ISBN 9780470640531

Download Algebra and Number Theory Book in PDF, Epub and Kindle

Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines—linear algebra, abstract algebra, and number theory—into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts. The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory. Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material. Algebra and Number Theory is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.

Algebraic Number Theory

Algebraic Number Theory
Title Algebraic Number Theory PDF eBook
Author Edwin Weiss
Publisher Courier Corporation
Pages 308
Release 2012-01-27
Genre Mathematics
ISBN 048615436X

Download Algebraic Number Theory Book in PDF, Epub and Kindle

Ideal either for classroom use or as exercises for mathematically minded individuals, this text introduces elementary valuation theory, extension of valuations, local and ordinary arithmetic fields, and global, quadratic, and cyclotomic fields.

The Theory of Algebraic Numbers: Second Edition

The Theory of Algebraic Numbers: Second Edition
Title The Theory of Algebraic Numbers: Second Edition PDF eBook
Author Harry Pollard
Publisher American Mathematical Soc.
Pages 175
Release 1975-12-31
Genre Mathematics
ISBN 1614440093

Download The Theory of Algebraic Numbers: Second Edition Book in PDF, Epub and Kindle

This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.

Problems in Algebraic Number Theory

Problems in Algebraic Number Theory
Title Problems in Algebraic Number Theory PDF eBook
Author M. Ram Murty
Publisher Springer Science & Business Media
Pages 354
Release 2005-09-28
Genre Mathematics
ISBN 0387269983

Download Problems in Algebraic Number Theory Book in PDF, Epub and Kindle

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved

Algebraic Number Theory and Fermat's Last Theorem

Algebraic Number Theory and Fermat's Last Theorem
Title Algebraic Number Theory and Fermat's Last Theorem PDF eBook
Author Ian Stewart
Publisher CRC Press
Pages 334
Release 2001-12-12
Genre Mathematics
ISBN 143986408X

Download Algebraic Number Theory and Fermat's Last Theorem Book in PDF, Epub and Kindle

First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it

Algebraic Number Theory

Algebraic Number Theory
Title Algebraic Number Theory PDF eBook
Author Serge Lang
Publisher Springer Science & Business Media
Pages 356
Release 2013-06-29
Genre Mathematics
ISBN 146120853X

Download Algebraic Number Theory Book in PDF, Epub and Kindle

This is a second edition of Lang's well-known textbook. It covers all of the basic material of classical algebraic number theory, giving the student the background necessary for the study of further topics in algebraic number theory, such as cyclotomic fields, or modular forms. "Lang's books are always of great value for the graduate student and the research mathematician. This updated edition of Algebraic number theory is no exception."—-MATHEMATICAL REVIEWS

Algebraic Number Theory

Algebraic Number Theory
Title Algebraic Number Theory PDF eBook
Author Ian Stewart
Publisher Springer
Pages 257
Release 1979-05-31
Genre Science
ISBN 9780412138409

Download Algebraic Number Theory Book in PDF, Epub and Kindle

The title of this book may be read in two ways. One is 'algebraic number-theory', that is, the theory of numbers viewed algebraically; the other, 'algebraic-number theory', the study of algebraic numbers. Both readings are compatible with our aims, and both are perhaps misleading. Misleading, because a proper coverage of either topic would require more space than is available, and demand more of the reader than we wish to; compatible, because our aim is to illustrate how some of the basic notions of the theory of algebraic numbers may be applied to problems in number theory. Algebra is an easy subject to compartmentalize, with topics such as 'groups', 'rings' or 'modules' being taught in comparative isolation. Many students view it this way. While it would be easy to exaggerate this tendency, it is not an especially desirable one. The leading mathematicians of the nineteenth and early twentieth centuries developed and used most of the basic results and techniques of linear algebra for perhaps a hundred years, without ever defining an abstract vector space: nor is there anything to suggest that they suf fered thereby. This historical fact may indicate that abstrac tion is not always as necessary as one commonly imagines; on the other hand the axiomatization of mathematics has led to enormous organizational and conceptual gains.