Polynomial Rings and Affine Algebraic Geometry

Polynomial Rings and Affine Algebraic Geometry
Title Polynomial Rings and Affine Algebraic Geometry PDF eBook
Author Shigeru Kuroda
Publisher Springer Nature
Pages 317
Release 2020-03-27
Genre Mathematics
ISBN 3030421368

Download Polynomial Rings and Affine Algebraic Geometry Book in PDF, Epub and Kindle

This proceedings volume gathers selected, peer-reviewed works presented at the Polynomial Rings and Affine Algebraic Geometry Conference, which was held at Tokyo Metropolitan University on February 12-16, 2018. Readers will find some of the latest research conducted by an international group of experts on affine and projective algebraic geometry. The topics covered include group actions and linearization, automorphism groups and their structure as infinite-dimensional varieties, invariant theory, the Cancellation Problem, the Embedding Problem, Mathieu spaces and the Jacobian Conjecture, the Dolgachev-Weisfeiler Conjecture, classification of curves and surfaces, real forms of complex varieties, and questions of rationality, unirationality, and birationality. These papers will be of interest to all researchers and graduate students working in the fields of affine and projective algebraic geometry, as well as on certain aspects of commutative algebra, Lie theory, symplectic geometry and Stein manifolds.

An Undergraduate Primer in Algebraic Geometry

An Undergraduate Primer in Algebraic Geometry
Title An Undergraduate Primer in Algebraic Geometry PDF eBook
Author Ciro Ciliberto
Publisher Springer Nature
Pages 327
Release 2021-05-05
Genre Mathematics
ISBN 3030710211

Download An Undergraduate Primer in Algebraic Geometry Book in PDF, Epub and Kindle

This book consists of two parts. The first is devoted to an introduction to basic concepts in algebraic geometry: affine and projective varieties, some of their main attributes and examples. The second part is devoted to the theory of curves: local properties, affine and projective plane curves, resolution of singularities, linear equivalence of divisors and linear series, Riemann–Roch and Riemann–Hurwitz Theorems. The approach in this book is purely algebraic. The main tool is commutative algebra, from which the needed results are recalled, in most cases with proofs. The prerequisites consist of the knowledge of basics in affine and projective geometry, basic algebraic concepts regarding rings, modules, fields, linear algebra, basic notions in the theory of categories, and some elementary point–set topology. This book can be used as a textbook for an undergraduate course in algebraic geometry. The users of the book are not necessarily intended to become algebraic geometers but may be interested students or researchers who want to have a first smattering in the topic. The book contains several exercises, in which there are more examples and parts of the theory that are not fully developed in the text. Of some exercises, there are solutions at the end of each chapter.

Affine Algebraic Geometry

Affine Algebraic Geometry
Title Affine Algebraic Geometry PDF eBook
Author Kayo Masuda
Publisher World Scientific Publishing Company Incorporated
Pages 330
Release 2013
Genre Mathematics
ISBN 9789814436694

Download Affine Algebraic Geometry Book in PDF, Epub and Kindle

The present volume grew out of an international conference on affine algebraic geometry held in Osaka, Japan during 3-6 March 2011 and is dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday. It contains 16 refereed articles in the areas of affine algebraic geometry, commutative algebra and related fields, which have been the working fields of Professor Miyanishi for almost 50 years. Readers will be able to find recent trends in these areas too. The topics contain both algebraic and analytic, as well as both affine and projective, problems. All the results treated in this volume are new and original which subsequently will provide fresh research problems to explore. This volume is suitable for graduate students and researchers in these areas.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Title Introduction to Algebraic Geometry PDF eBook
Author Steven Dale Cutkosky
Publisher American Mathematical Soc.
Pages 498
Release 2018-06-01
Genre Mathematics
ISBN 1470435187

Download Introduction to Algebraic Geometry Book in PDF, Epub and Kindle

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Methods of Algebraic Geometry in Control Theory: Part I

Methods of Algebraic Geometry in Control Theory: Part I
Title Methods of Algebraic Geometry in Control Theory: Part I PDF eBook
Author Peter Falb
Publisher Springer
Pages 211
Release 2018-08-25
Genre Mathematics
ISBN 3319980262

Download Methods of Algebraic Geometry in Control Theory: Part I Book in PDF, Epub and Kindle

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik

Affine Space Fibrations

Affine Space Fibrations
Title Affine Space Fibrations PDF eBook
Author Rajendra V. Gurjar
Publisher Walter de Gruyter GmbH & Co KG
Pages 275
Release 2021-07-05
Genre Mathematics
ISBN 3110577429

Download Affine Space Fibrations Book in PDF, Epub and Kindle

Affine algebraic geometry has progressed remarkably in the last half a century, and its central topics are affine spaces and affine space fibrations. This authoritative book is aimed at graduate students and researchers alike, and studies the geometry and topology of morphisms of algebraic varieties whose general fibers are isomorphic to the affine space while describing structures of algebraic varieties with such affine space fibrations.

Algebraic Geometry

Algebraic Geometry
Title Algebraic Geometry PDF eBook
Author Robin Hartshorne
Publisher Springer Science & Business Media
Pages 511
Release 2013-06-29
Genre Mathematics
ISBN 1475738498

Download Algebraic Geometry Book in PDF, Epub and Kindle

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.