Advancing Our Understanding of Structure and Function in the Brain: Developing Novel Approaches for Network Inference and Emergent Phenomena
Title | Advancing Our Understanding of Structure and Function in the Brain: Developing Novel Approaches for Network Inference and Emergent Phenomena PDF eBook |
Author | Chris G. Antonopoulos |
Publisher | Frontiers Media SA |
Pages | 143 |
Release | 2021-02-09 |
Genre | Science |
ISBN | 2889664724 |
Fundamentals of Brain Network Analysis
Title | Fundamentals of Brain Network Analysis PDF eBook |
Author | Alex Fornito |
Publisher | Academic Press |
Pages | 496 |
Release | 2016-03-04 |
Genre | Medical |
ISBN | 0124081185 |
Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain
Bayesian Brain
Title | Bayesian Brain PDF eBook |
Author | Kenji Doya |
Publisher | MIT Press |
Pages | 341 |
Release | 2007 |
Genre | Bayesian statistical decision theory |
ISBN | 026204238X |
Experimental and theoretical neuroscientists use Bayesian approaches to analyze the brain mechanisms of perception, decision-making, and motor control.
The Oxford Handbook of Cognitive Science
Title | The Oxford Handbook of Cognitive Science PDF eBook |
Author | Susan F. Chipman |
Publisher | Oxford University Press |
Pages | 393 |
Release | 2017 |
Genre | Language Arts & Disciplines |
ISBN | 0199842191 |
The Oxford Handbook of Cognitive Science emphasizes the research and theory most central to modern cognitive science: computational theories of complex human cognition. Additional facets of cognitive science are discussed in the handbook's introductory chapter.
Artificial Intelligence in the Age of Neural Networks and Brain Computing
Title | Artificial Intelligence in the Age of Neural Networks and Brain Computing PDF eBook |
Author | Robert Kozma |
Publisher | Academic Press |
Pages | 398 |
Release | 2023-10-11 |
Genre | Computers |
ISBN | 0323958168 |
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Bulletin of the Atomic Scientists
Title | Bulletin of the Atomic Scientists PDF eBook |
Author | |
Publisher | |
Pages | 104 |
Release | 1970-12 |
Genre | |
ISBN |
The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.
Active Inference
Title | Active Inference PDF eBook |
Author | Thomas Parr |
Publisher | MIT Press |
Pages | 313 |
Release | 2022-03-29 |
Genre | Science |
ISBN | 0262362287 |
The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.