Advances in Statistical Modeling and Inference
Title | Advances in Statistical Modeling and Inference PDF eBook |
Author | Vijay Nair |
Publisher | World Scientific |
Pages | 698 |
Release | 2007 |
Genre | Mathematics |
ISBN | 9812703691 |
There have been major developments in the field of statistics over the last quarter century, spurred by the rapid advances in computing and data-measurement technologies. These developments have revolutionized the field and have greatly influenced research directions in theory and methodology. Increased computing power has spawned entirely new areas of research in computationally-intensive methods, allowing us to move away from narrowly applicable parametric techniques based on restrictive assumptions to much more flexible and realistic models and methods. These computational advances have also led to the extensive use of simulation and Monte Carlo techniques in statistical inference. All of these developments have, in turn, stimulated new research in theoretical statistics.This volume provides an up-to-date overview of recent advances in statistical modeling and inference. Written by renowned researchers from across the world, it discusses flexible models, semi-parametric methods and transformation models, nonparametric regression and mixture models, survival and reliability analysis, and re-sampling techniques. With its coverage of methodology and theory as well as applications, the book is an essential reference for researchers, graduate students, and practitioners.
Advances in Statistical Bioinformatics
Title | Advances in Statistical Bioinformatics PDF eBook |
Author | Kim-Anh Do |
Publisher | Cambridge University Press |
Pages | 499 |
Release | 2013-06-10 |
Genre | Mathematics |
ISBN | 1107027527 |
This book describes the integration of high-throughput bioinformatics data from multiple platforms to inform our understanding of the functional consequences of genomic alterations.
Probability and Statistical Inference
Title | Probability and Statistical Inference PDF eBook |
Author | Miltiadis C. Mavrakakis |
Publisher | CRC Press |
Pages | 444 |
Release | 2021-03-28 |
Genre | Mathematics |
ISBN | 131536204X |
Probability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting. Features: •Complete introduction to mathematical probability, random variables, and distribution theory. •Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes. •Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference. •Detailed introduction to Bayesian statistics and associated topics. •Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC). This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields.
Statistical Models and Causal Inference
Title | Statistical Models and Causal Inference PDF eBook |
Author | David A. Freedman |
Publisher | Cambridge University Press |
Pages | 416 |
Release | 2010 |
Genre | Mathematics |
ISBN | 0521195004 |
David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.
Statistical Modeling for Degradation Data
Title | Statistical Modeling for Degradation Data PDF eBook |
Author | Ding-Geng (Din) Chen |
Publisher | Springer |
Pages | 382 |
Release | 2017-08-31 |
Genre | Mathematics |
ISBN | 9811051941 |
This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.
Statistical Modeling and Computation
Title | Statistical Modeling and Computation PDF eBook |
Author | Dirk P. Kroese |
Publisher | Springer Science & Business Media |
Pages | 412 |
Release | 2013-11-18 |
Genre | Computers |
ISBN | 1461487757 |
This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement.
Statistical Inference as Severe Testing
Title | Statistical Inference as Severe Testing PDF eBook |
Author | Deborah G. Mayo |
Publisher | Cambridge University Press |
Pages | 503 |
Release | 2018-09-20 |
Genre | Mathematics |
ISBN | 1108563309 |
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.