Advances in Neural Information Processing Systems 19

Advances in Neural Information Processing Systems 19
Title Advances in Neural Information Processing Systems 19 PDF eBook
Author Bernhard Schölkopf
Publisher MIT Press
Pages 1668
Release 2007
Genre Artificial intelligence
ISBN 0262195682

Download Advances in Neural Information Processing Systems 19 Book in PDF, Epub and Kindle

The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.

Theory of Neural Information Processing Systems

Theory of Neural Information Processing Systems
Title Theory of Neural Information Processing Systems PDF eBook
Author A.C.C. Coolen
Publisher OUP Oxford
Pages 596
Release 2005-07-21
Genre Neural networks (Computer science)
ISBN 9780191583001

Download Theory of Neural Information Processing Systems Book in PDF, Epub and Kindle

Theory of Neural Information Processing Systems provides an explicit, coherent, and up-to-date account of the modern theory of neural information processing systems. It has been carefully developed for graduate students from any quantitative discipline, including mathematics, computer science, physics, engineering or biology, and has been thoroughly class-tested by the authors over a period of some 8 years. Exercises are presented throughout the text and notes on historical background and further reading guide the student into the literature. All mathematical details are included and appendices provide further background material, including probability theory, linear algebra and stochastic processes, making this textbook accessible to a wide audience.

Neural Information Processing and VLSI

Neural Information Processing and VLSI
Title Neural Information Processing and VLSI PDF eBook
Author Bing J. Sheu
Publisher Springer Science & Business Media
Pages 569
Release 2012-12-06
Genre Technology & Engineering
ISBN 1461522471

Download Neural Information Processing and VLSI Book in PDF, Epub and Kindle

Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.

An Introduction to Neural Information Retrieval

An Introduction to Neural Information Retrieval
Title An Introduction to Neural Information Retrieval PDF eBook
Author Bhaskar Mitra
Publisher Foundations and Trends (R) in Information Retrieval
Pages 142
Release 2018-12-23
Genre
ISBN 9781680835328

Download An Introduction to Neural Information Retrieval Book in PDF, Epub and Kindle

Efficient Query Processing for Scalable Web Search will be a valuable reference for researchers and developers working on This tutorial provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.

Brain, Body and Machine

Brain, Body and Machine
Title Brain, Body and Machine PDF eBook
Author Jorge Angeles
Publisher Springer Science & Business Media
Pages 364
Release 2010-10-01
Genre Technology & Engineering
ISBN 3642162592

Download Brain, Body and Machine Book in PDF, Epub and Kindle

The reader will find here papers on human-robot interaction as well as human safety algorithms; haptic interfaces; innovative instruments and algorithms for the sensing of motion and the identification of brain neoplasms; and, even a paper on a saxophone-playing robot.

Handbook on Neural Information Processing

Handbook on Neural Information Processing
Title Handbook on Neural Information Processing PDF eBook
Author Monica Bianchini
Publisher Springer Science & Business Media
Pages 547
Release 2013-04-12
Genre Technology & Engineering
ISBN 3642366570

Download Handbook on Neural Information Processing Book in PDF, Epub and Kindle

This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: Deep architectures Recurrent, recursive, and graph neural networks Cellular neural networks Bayesian networks Approximation capabilities of neural networks Semi-supervised learning Statistical relational learning Kernel methods for structured data Multiple classifier systems Self organisation and modal learning Applications to content-based image retrieval, text mining in large document collections, and bioinformatics This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms.

Federated Learning

Federated Learning
Title Federated Learning PDF eBook
Author Qiang Yang
Publisher Springer Nature
Pages 291
Release 2020-11-25
Genre Computers
ISBN 3030630765

Download Federated Learning Book in PDF, Epub and Kindle

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”