Advances in Moduli Theory
Title | Advances in Moduli Theory PDF eBook |
Author | Kenji Ueno |
Publisher | American Mathematical Soc. |
Pages | 328 |
Release | 2002 |
Genre | Mathematics |
ISBN | 9780821821565 |
The word ``moduli'' in the sense of this book first appeared in the epoch-making paper of B. Riemann, Theorie der Abel'schen Funktionen, published in 1857. Riemann defined a Riemann surface of an algebraic function field as a branched covering of a one-dimensional complex projective space, and found out that Riemann surfaces have parameters. This work gave birth to the theory of moduli. However, the viewpoint regarding a Riemann surface as an algebraic curve became the mainstream,and the moduli meant the parameters for the figures (graphs) defined by equations. In 1913, H. Weyl defined a Riemann surface as a complex manifold of dimension one. Moreover, Teichmuller's theory of quasiconformal mappings and Teichmuller spaces made a start for new development of the theory ofmoduli, making possible a complex analytic approach toward the theory of moduli of Riemann surfaces. This theory was then investigated and made complete by Ahlfors, Bers, Rauch, and others. However, the theory of Teichmuller spaces utilized the special nature of complex dimension one, and it was difficult to generalize it to an arbitrary dimension in a direct way. It was Kodaira-Spencer's deformation theory of complex manifolds that allowed one to study arbitrary dimensional complex manifolds.Initial motivation in Kodaira-Spencer's discussion was the need to clarify what one should mean by number of moduli. Their results, together with further work by Kuranishi, provided this notion with intrinsic meaning. This book begins by presenting the Kodaira-Spencer theory in its original naiveform in Chapter 1 and introduces readers to moduli theory from the viewpoint of complex analytic geometry. Chapter 2 briefly outlines the theory of period mapping and Jacobian variety for compact Riemann surfaces, with the Torelli theorem as a goal. The theory of period mappings for compact Riemann surfaces can be generalized to the theory of period mappings in terms of Hodge structures for compact Kahler manifolds. In Chapter 3, the authors state the theory of Hodge structures, focusingbriefly on period mappings. Chapter 4 explains conformal field theory as an application of moduli theory. This is the English translation of a book originally published in Japanese. Other books by Kenji Ueno published in this AMS series, Translations of Mathematical Monographs, include An Introduction toAlgebraic Geometry, Volume 166, Algebraic Geometry 1: From Algebraic Varieties to Schemes, Volume 185, and Algebraic Geometry 2: Sheaves and Cohomology, Volume 197.
Recent Advances in Hodge Theory
Title | Recent Advances in Hodge Theory PDF eBook |
Author | Matt Kerr |
Publisher | Cambridge University Press |
Pages | 533 |
Release | 2016-02-04 |
Genre | Mathematics |
ISBN | 110754629X |
Combines cutting-edge research and expository articles in Hodge theory. An essential reference for graduate students and researchers.
An Introduction to Invariants and Moduli
Title | An Introduction to Invariants and Moduli PDF eBook |
Author | Shigeru Mukai |
Publisher | Cambridge University Press |
Pages | 528 |
Release | 2003-09-08 |
Genre | Mathematics |
ISBN | 9780521809061 |
Sample Text
Moduli Spaces of Riemann Surfaces
Title | Moduli Spaces of Riemann Surfaces PDF eBook |
Author | Benson Farb |
Publisher | American Mathematical Soc. |
Pages | 371 |
Release | 2013-08-16 |
Genre | Mathematics |
ISBN | 0821898876 |
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
The Geometry of Moduli Spaces of Sheaves
Title | The Geometry of Moduli Spaces of Sheaves PDF eBook |
Author | Daniel Huybrechts |
Publisher | Cambridge University Press |
Pages | 345 |
Release | 2010-05-27 |
Genre | Mathematics |
ISBN | 1139485822 |
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
Geometry of Moduli Spaces and Representation Theory
Title | Geometry of Moduli Spaces and Representation Theory PDF eBook |
Author | Roman Bezrukavnikov |
Publisher | American Mathematical Soc. |
Pages | 449 |
Release | 2017-12-15 |
Genre | Mathematics |
ISBN | 1470435748 |
This book is based on lectures given at the Graduate Summer School of the 2015 Park City Mathematics Institute program “Geometry of moduli spaces and representation theory”, and is devoted to several interrelated topics in algebraic geometry, topology of algebraic varieties, and representation theory. Geometric representation theory is a young but fast developing research area at the intersection of these subjects. An early profound achievement was the famous conjecture by Kazhdan–Lusztig about characters of highest weight modules over a complex semi-simple Lie algebra, and its subsequent proof by Beilinson-Bernstein and Brylinski-Kashiwara. Two remarkable features of this proof have inspired much of subsequent development: intricate algebraic data turned out to be encoded in topological invariants of singular geometric spaces, while proving this fact required deep general theorems from algebraic geometry. Another focus of the program was enumerative algebraic geometry. Recent progress showed the role of Lie theoretic structures in problems such as calculation of quantum cohomology, K-theory, etc. Although the motivation and technical background of these constructions is quite different from that of geometric Langlands duality, both theories deal with topological invariants of moduli spaces of maps from a target of complex dimension one. Thus they are at least heuristically related, while several recent works indicate possible strong technical connections. The main goal of this collection of notes is to provide young researchers and experts alike with an introduction to these areas of active research and promote interaction between the two related directions.
Recent Advances in Algebraic Geometry
Title | Recent Advances in Algebraic Geometry PDF eBook |
Author | Christopher D. Hacon |
Publisher | Cambridge University Press |
Pages | 451 |
Release | 2015-01-15 |
Genre | Mathematics |
ISBN | 110764755X |
A comprehensive collection of expository articles on cutting-edge topics at the forefront of research in algebraic geometry.