Advances In Data-based Approaches For Hydrologic Modeling And Forecasting

Advances In Data-based Approaches For Hydrologic Modeling And Forecasting
Title Advances In Data-based Approaches For Hydrologic Modeling And Forecasting PDF eBook
Author Bellie Sivakumar
Publisher World Scientific
Pages 542
Release 2010-08-10
Genre Science
ISBN 9814464759

Download Advances In Data-based Approaches For Hydrologic Modeling And Forecasting Book in PDF, Epub and Kindle

This book comprehensively accounts the advances in data-based approaches for hydrologic modeling and forecasting. Eight major and most popular approaches are selected, with a chapter for each — stochastic methods, parameter estimation techniques, scaling and fractal methods, remote sensing, artificial neural networks, evolutionary computing, wavelets, and nonlinear dynamics and chaos methods. These approaches are chosen to address a wide range of hydrologic system characteristics, processes, and the associated problems. Each of these eight approaches includes a comprehensive review of the fundamental concepts, their applications in hydrology, and a discussion on potential future directions.

Advances in Data-based Approaches for Hydrologic Modeling and Forecasting

Advances in Data-based Approaches for Hydrologic Modeling and Forecasting
Title Advances in Data-based Approaches for Hydrologic Modeling and Forecasting PDF eBook
Author Bellie Sivakumar
Publisher World Scientific
Pages 542
Release 2010
Genre Science
ISBN 9814307971

Download Advances in Data-based Approaches for Hydrologic Modeling and Forecasting Book in PDF, Epub and Kindle

This book comprehensively accounts the advances in data-based approaches for hydrologic modeling and forecasting. Eight major and most popular approaches are selected, with a chapter for each stochastic methods, parameter estimation techniques, scaling and fractal methods, remote sensing, artificial neural networks, evolutionary computing, wavelets, and nonlinear dynamics and chaos methods. These approaches are chosen to address a wide range of hydrologic system characteristics, processes, and the associated problems. Each of these eight approaches includes a comprehensive review of the fundamental concepts, their applications in hydrology, and a discussion on potential future directions.

Hydrological Data Driven Modelling

Hydrological Data Driven Modelling
Title Hydrological Data Driven Modelling PDF eBook
Author Renji Remesan
Publisher Springer
Pages 261
Release 2014-11-03
Genre Science
ISBN 3319092359

Download Hydrological Data Driven Modelling Book in PDF, Epub and Kindle

This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.

Advances in Streamflow Forecasting

Advances in Streamflow Forecasting
Title Advances in Streamflow Forecasting PDF eBook
Author Priyanka Sharma
Publisher Elsevier
Pages 406
Release 2021-06-20
Genre Science
ISBN 0128209240

Download Advances in Streamflow Forecasting Book in PDF, Epub and Kindle

Advances in Streamflow Forecasting: From Traditional to Modern Approaches covers the three major data-driven approaches of streamflow forecasting including traditional approach of statistical and stochastic time-series modelling with their recent developments, stand-alone data-driven approach such as artificial intelligence techniques, and modern hybridized approach where data-driven models are combined with preprocessing methods to improve the forecast accuracy of streamflows and to reduce the forecast uncertainties. This book starts by providing the background information, overview, and advances made in streamflow forecasting. The overview portrays the progress made in the field of streamflow forecasting over the decades. Thereafter, chapters describe theoretical methodology of the different data-driven tools and techniques used for streamflow forecasting along with case studies from different parts of the world. Each chapter provides a flowchart explaining step-by-step methodology followed in applying the data-driven approach in streamflow forecasting. This book addresses challenges in forecasting streamflows by abridging the gaps between theory and practice through amalgamation of theoretical descriptions of the data-driven techniques and systematic demonstration of procedures used in applying the techniques. Language of this book is kept simple to make the readers understand easily about different techniques and make them capable enough to straightforward replicate the approach in other areas of their interest. This book will be vital for hydrologists when optimizing the water resources system, and to mitigate the impact of destructive natural disasters such as floods and droughts by implementing long-term planning (structural and nonstructural measures), and short-term emergency warning. Moreover, this book will guide the readers in choosing an appropriate technique for streamflow forecasting depending upon the given set of conditions. - Contributions from renowned researchers/experts of the subject from all over the world to provide the most authoritative outlook on streamflow forecasting - Provides an excellent overview and advances made in streamflow forecasting over the past more than five decades and covers both traditional and modern data-driven approaches in streamflow forecasting - Includes case studies along with detailed flowcharts demonstrating a systematic application of different data-driven models in streamflow forecasting, which helps understand the step-by-step procedures

Chaos in Hydrology

Chaos in Hydrology
Title Chaos in Hydrology PDF eBook
Author Bellie Sivakumar
Publisher Springer
Pages 408
Release 2016-11-16
Genre Science
ISBN 9048125529

Download Chaos in Hydrology Book in PDF, Epub and Kindle

This authoritative book presents a comprehensive account of the essential roles of nonlinear dynamic and chaos theories in understanding, modeling, and forecasting hydrologic systems. This is done through a systematic presentation of: (1) information on the salient characteristics of hydrologic systems and on the existing theories for their modeling; (2) the fundamentals of nonlinear dynamic and chaos theories, methods for chaos identification and prediction, and associated issues; (3) a review of the applications of chaos theory in hydrology; and (4) the scope and potential directions for the future. This book bridges the divide between the deterministic and the stochastic schools in hydrology, and is well suited as a textbook for hydrology courses.

Flood Forecasting Using Machine Learning Methods

Flood Forecasting Using Machine Learning Methods
Title Flood Forecasting Using Machine Learning Methods PDF eBook
Author Fi-John Chang
Publisher MDPI
Pages 376
Release 2019-02-28
Genre Technology & Engineering
ISBN 3038975486

Download Flood Forecasting Using Machine Learning Methods Book in PDF, Epub and Kindle

Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.

Advances in Nonlinear Geosciences

Advances in Nonlinear Geosciences
Title Advances in Nonlinear Geosciences PDF eBook
Author Anastasios A. Tsonis
Publisher Springer
Pages 708
Release 2017-10-13
Genre Science
ISBN 3319588958

Download Advances in Nonlinear Geosciences Book in PDF, Epub and Kindle

Advances in Nonlinear Geosciences is a set of contributions from the participants of “30 Years of Nonlinear Dynamics” held July 3-8, 2016 in Rhodes, Greece as part of the Aegean Conferences, as well as from several other experts in the field who could not attend the meeting. The volume brings together up-to-date research from the atmospheric sciences, hydrology, geology, and other areas of geosciences and presents the new advances made in the last 10 years. Topics include chaos synchronization, topological data analysis, new insights on fractals, multifractals and stochasticity, climate dynamics, extreme events, complexity, and causality, among other topics.