Complex Geometry

Complex Geometry
Title Complex Geometry PDF eBook
Author Daniel Huybrechts
Publisher Springer Science & Business Media
Pages 336
Release 2005
Genre Computers
ISBN 9783540212904

Download Complex Geometry Book in PDF, Epub and Kindle

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

Complex Differential Geometry

Complex Differential Geometry
Title Complex Differential Geometry PDF eBook
Author Fangyang Zheng
Publisher American Mathematical Soc.
Pages 284
Release 2000
Genre Mathematics
ISBN 9780821888223

Download Complex Differential Geometry Book in PDF, Epub and Kindle

The Geometry of Complex Domains

The Geometry of Complex Domains
Title The Geometry of Complex Domains PDF eBook
Author Robert E. Greene
Publisher Springer Science & Business Media
Pages 310
Release 2011-05-18
Genre Mathematics
ISBN 0817646221

Download The Geometry of Complex Domains Book in PDF, Epub and Kindle

This work examines a rich tapestry of themes and concepts and provides a comprehensive treatment of an important area of mathematics, while simultaneously covering a broader area of the geometry of domains in complex space. At once authoritative and accessible, this text touches upon many important parts of modern mathematics: complex geometry, equivalent embeddings, Bergman and Kahler geometry, curvatures, differential invariants, boundary asymptotics of geometries, group actions, and moduli spaces. The Geometry of Complex Domains can serve as a “coming of age” book for a graduate student who has completed at least one semester or more of complex analysis, and will be most welcomed by analysts and geometers engaged in current research.

An Introduction to Complex Analysis and Geometry

An Introduction to Complex Analysis and Geometry
Title An Introduction to Complex Analysis and Geometry PDF eBook
Author John P. D'Angelo
Publisher American Mathematical Soc.
Pages 177
Release 2010
Genre Functions of complex variables
ISBN 0821852744

Download An Introduction to Complex Analysis and Geometry Book in PDF, Epub and Kindle

Provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 to 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.

Complex Analysis and CR Geometry

Complex Analysis and CR Geometry
Title Complex Analysis and CR Geometry PDF eBook
Author Giuseppe Zampieri
Publisher American Mathematical Soc.
Pages 210
Release 2008
Genre Mathematics
ISBN 0821844423

Download Complex Analysis and CR Geometry Book in PDF, Epub and Kindle

Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the $\bar\partial$-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometryrequires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting tograduate students who wish to learn it.

Hodge Theory, Complex Geometry, and Representation Theory

Hodge Theory, Complex Geometry, and Representation Theory
Title Hodge Theory, Complex Geometry, and Representation Theory PDF eBook
Author Mark Green
Publisher American Mathematical Soc.
Pages 314
Release 2013-11-05
Genre Mathematics
ISBN 1470410125

Download Hodge Theory, Complex Geometry, and Representation Theory Book in PDF, Epub and Kindle

This monograph presents topics in Hodge theory and representation theory, two of the most active and important areas in contemporary mathematics. The underlying theme is the use of complex geometry to understand the two subjects and their relationships to one another--an approach that is complementary to what is in the literature. Finite-dimensional representation theory and complex geometry enter via the concept of Hodge representations and Hodge domains. Infinite-dimensional representation theory, specifically the discrete series and their limits, enters through the realization of these representations through complex geometry as pioneered by Schmid, and in the subsequent description of automorphic cohomology. For the latter topic, of particular importance is the recent work of Carayol that potentially introduces a new perspective in arithmetic automorphic representation theory. The present work gives a treatment of Carayol's work, and some extensions of it, set in a general complex geometric framework. Additional subjects include a description of the relationship between limiting mixed Hodge structures and the boundary orbit structure of Hodge domains, a general treatment of the correspondence spaces that are used to construct Penrose transforms and selected other topics from the recent literature. A co-publication of the AMS and CBMS.

Hodge Theory and Complex Algebraic Geometry I:

Hodge Theory and Complex Algebraic Geometry I:
Title Hodge Theory and Complex Algebraic Geometry I: PDF eBook
Author Claire Voisin
Publisher Cambridge University Press
Pages 334
Release 2007-12-20
Genre Mathematics
ISBN 9780521718011

Download Hodge Theory and Complex Algebraic Geometry I: Book in PDF, Epub and Kindle

This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.