Advances in Bayesian Networks
Title | Advances in Bayesian Networks PDF eBook |
Author | José A. Gámez |
Publisher | Springer |
Pages | 334 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 3540398791 |
In recent years probabilistic graphical models, especially Bayesian networks and decision graphs, have experienced significant theoretical development within areas such as artificial intelligence and statistics. This carefully edited monograph is a compendium of the most recent advances in the area of probabilistic graphical models such as decision graphs, learning from data and inference. It presents a survey of the state of the art of specific topics of recent interest of Bayesian Networks, including approximate propagation, abductive inferences, decision graphs, and applications of influence. In addition, Advances in Bayesian Networks presents a careful selection of applications of probabilistic graphical models to various fields such as speech recognition, meteorology or information retrieval.
Advanced Methodologies for Bayesian Networks
Title | Advanced Methodologies for Bayesian Networks PDF eBook |
Author | Joe Suzuki |
Publisher | Springer |
Pages | 281 |
Release | 2016-01-07 |
Genre | Computers |
ISBN | 3319283790 |
This volume constitutes the refereed proceedings of the Second International Workshop on Advanced Methodologies for Bayesian Networks, AMBN 2015, held in Yokohama, Japan, in November 2015. The 18 revised full papers and 6 invited abstracts presented were carefully reviewed and selected from numerous submissions. In the International Workshop on Advanced Methodologies for Bayesian Networks (AMBN), the researchers explore methodologies for enhancing the effectiveness of graphical models including modeling, reasoning, model selection, logic-probability relations, and causality. The exploration of methodologies is complemented discussions of practical considerations for applying graphical models in real world settings, covering concerns like scalability, incremental learning, parallelization, and so on.
Learning Bayesian Networks
Title | Learning Bayesian Networks PDF eBook |
Author | Richard E. Neapolitan |
Publisher | Prentice Hall |
Pages | 704 |
Release | 2004 |
Genre | Computers |
ISBN |
In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.
Modeling and Reasoning with Bayesian Networks
Title | Modeling and Reasoning with Bayesian Networks PDF eBook |
Author | Adnan Darwiche |
Publisher | Cambridge University Press |
Pages | 561 |
Release | 2009-04-06 |
Genre | Computers |
ISBN | 0521884381 |
This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.
Bayesian Networks
Title | Bayesian Networks PDF eBook |
Author | Douglas McNair |
Publisher | Intechopen |
Pages | 138 |
Release | 2019 |
Genre | Mathematics |
ISBN | 1839623225 |
Bayesian networks (BN) have recently experienced increased interest and diverse applications in numerous areas, including economics, risk analysis and assets and liabilities management, AI and robotics, transportation systems planning and optimization, political science analytics, law and forensic science assessment of agency and culpability, pharmacology and pharmacogenomics, systems biology and metabolomics, psychology, and policy-making and social programs evaluation. This strong and varied response results not least from the fact that plausibilistic Bayesian models of structures and processes can be robust and stable representations of causal relationships. Additionally, BNs' amenability to incremental or longitudinal improvement through incorporating new data affords extra advantages compared to traditional frequentist statistical methods. Contributors to this volume elucidate various new developments in these aspects of BNs.
Bayesian Networks and Decision Graphs
Title | Bayesian Networks and Decision Graphs PDF eBook |
Author | Thomas Dyhre Nielsen |
Publisher | Springer Science & Business Media |
Pages | 457 |
Release | 2009-03-17 |
Genre | Science |
ISBN | 0387682821 |
This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.
Bayesian Networks
Title | Bayesian Networks PDF eBook |
Author | Olivier Pourret |
Publisher | John Wiley & Sons |
Pages | 446 |
Release | 2008-04-30 |
Genre | Mathematics |
ISBN | 9780470994542 |
Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.