Advanced Semiconductor Heterostructures: Novel Devices, Potential Device Applications And Basic Properties

Advanced Semiconductor Heterostructures: Novel Devices, Potential Device Applications And Basic Properties
Title Advanced Semiconductor Heterostructures: Novel Devices, Potential Device Applications And Basic Properties PDF eBook
Author Michael A Stroscio
Publisher World Scientific
Pages 244
Release 2003-09-12
Genre Technology & Engineering
ISBN 9814486558

Download Advanced Semiconductor Heterostructures: Novel Devices, Potential Device Applications And Basic Properties Book in PDF, Epub and Kindle

This volume provides valuable summaries on many aspects of advanced semiconductor heterostructures and highlights the great variety of semiconductor heterostructures that has emerged since their original conception. As exemplified by the chapters in this book, recent progress on advanced semiconductor heterostructures spans a truly remarkable range of scientific fields with an associated diversity of applications. Some of these applications will undoubtedly revolutionize critically important facets of modern technology. At the heart of these advances is the ability to design and control the properties of semiconductor devices on the nanoscale. As an example, the intersubband lasers discussed in this book have a broad range of previously unobtainable characteristics and associated applications as a result of the nanoscale dimensional control of the underlying semiconductor heterostructures. As this book illustrates, an astounding variety of heterostructures can be fabricated with current technology; the potentially widespread use of layered quantum dots fabricated with nanoscale precision in biological applications opens up exciting advances in medicine. In addition, many more excellent examples of the remarkable impact being made through the use of semiconductor heterostructures are given. The summaries in this volume provide timely insights into what we know now about selected areas of advanced semiconductor heterostructures and also provide foundations for further developments.

Advanced Semiconductor Heterostructures

Advanced Semiconductor Heterostructures
Title Advanced Semiconductor Heterostructures PDF eBook
Author Mitra Dutta
Publisher World Scientific
Pages 256
Release 2003
Genre Science
ISBN 9789812775542

Download Advanced Semiconductor Heterostructures Book in PDF, Epub and Kindle

Novel heterostructure devices. Electron-phonon interactions in intersubband laser heterostructures / M.V. Kisin, M. Dutta, and M.A. Stroscio -- Quantum dot infrared detectors and sources / P. Bhattacharya ... [et al.] -- Generation of terahertz emission based on intersubband transitions / Q. Hu -- Mid-infrared GaSb-based lasers with Type-I heterointerfaces / D.V. Donetsky, R.U. Martinelli, and G.L. Belenky -- Advances in quantum-dot research and technology: the path to applications in biology / M.A. Stroscio and M. Dutta -- Potential device applications and basic properties. High-field electron transport controlled by optical phonon emission in nitrides / S.M. Komirenko ... [et al.] -- Cooling by inverse Nottingham effect with resonant tunneling / Y. Yu, R.F. Greene, and R. Tsu -- The physics of single electron transistors / M.A. Kastner -- Carrier capture and transport within tunnel injection lasers: a quantum transport analysis / L.F. Register ... [et al.] -- The influence of environmental effects on the acoustic phonon spectra in quantum-dot heterostructures / S. Rufo, M. Dutta, and M.A. Stroscio -- Quantum devices with multipole-electrode - heterojunctions hybrid structures / R. Tsu.

Epitaxy of Semiconductors

Epitaxy of Semiconductors
Title Epitaxy of Semiconductors PDF eBook
Author Udo W. Pohl
Publisher Springer Nature
Pages 546
Release 2020-07-20
Genre Technology & Engineering
ISBN 3030438694

Download Epitaxy of Semiconductors Book in PDF, Epub and Kindle

The extended and revised edition of this textbook provides essential information for a comprehensive upper-level graduate course on the crystalline growth of semiconductor heterostructures. Heteroepitaxy is the basis of today’s advanced electronic and optoelectronic devices, and it is considered one of the most important fields in materials research and nanotechnology. The book discusses the structural and electronic properties of strained epitaxial layers, the thermodynamics and kinetics of layer growth, and it describes the major growth techniques: metalorganic vapor-phase epitaxy, molecular-beam epitaxy, and liquid-phase epitaxy. It also examines in detail cubic and hexagonal semiconductors, strain relaxation by misfit dislocations, strain and confinement effects on electronic states, surface structures, and processes during nucleation and growth. Requiring only minimal knowledge of solid-state physics, it provides natural sciences, materials science and electrical engineering students and their lecturers elementary introductions to the theory and practice of epitaxial growth, supported by references and over 300 detailed illustrations. In this second edition, many topics have been extended and treated in more detail, e.g. in situ growth monitoring, application of surfactants, properties of dislocations and defects in organic crystals, and special growth techniques like vapor-liquid-solid growth of nanowires and selective-area epitaxy.

Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures
Title Characterization of Semiconductor Heterostructures and Nanostructures PDF eBook
Author Giovanni Agostini
Publisher Elsevier
Pages 501
Release 2011-08-11
Genre Science
ISBN 0080558151

Download Characterization of Semiconductor Heterostructures and Nanostructures Book in PDF, Epub and Kindle

In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors

Atomic-scale Properties of Semiconductor Heterostructures Probed by Scanning Tunneling Microscopy

Atomic-scale Properties of Semiconductor Heterostructures Probed by Scanning Tunneling Microscopy
Title Atomic-scale Properties of Semiconductor Heterostructures Probed by Scanning Tunneling Microscopy PDF eBook
Author
Publisher
Pages 11
Release 1998
Genre
ISBN

Download Atomic-scale Properties of Semiconductor Heterostructures Probed by Scanning Tunneling Microscopy Book in PDF, Epub and Kindle

The engineering of advanced semiconductor heterostructure materials and devices requires a detailed understanding of, and control over, the structure and properties of semiconductor materials and devices at the atomic to nanometer scale. Cross-sectional scanning tunneling microscopy has emerged as a unique and powerful method to characterize structural morphology and electronic properties in semiconductor epitaxial layers and device structures at these length scales. The basic experimental techniques in cross-sectional scanning tunneling microscopy are described, and some representative applications to semiconductor heterostructure characterization drawn from recent investigations in the authors laboratory are discussed. Specifically, they describe some recent studies of InP/InAsP and InAsP/InAsSb heterostructures in which nanoscale compositional clustering has been observed and analyzed.

Heterostructures and Quantum Devices

Heterostructures and Quantum Devices
Title Heterostructures and Quantum Devices PDF eBook
Author Norman G. Einspruch
Publisher Elsevier
Pages 465
Release 2014-06-28
Genre Technology & Engineering
ISBN 1483295176

Download Heterostructures and Quantum Devices Book in PDF, Epub and Kindle

Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical engineering devices. The text covers existing technologies and future possibilities within a common framework of high-performance devices, which will have a more immediate impact on advanced semiconductor physics-particularly quantum effects-and will thus form the basis for longer-term technology development.

Evaluation of Advanced Semiconductor Materials by Electron Microscopy

Evaluation of Advanced Semiconductor Materials by Electron Microscopy
Title Evaluation of Advanced Semiconductor Materials by Electron Microscopy PDF eBook
Author David Cherns
Publisher Springer Science & Business Media
Pages 413
Release 2012-12-06
Genre Medical
ISBN 1461305276

Download Evaluation of Advanced Semiconductor Materials by Electron Microscopy Book in PDF, Epub and Kindle

The last few years have ~een rapid improvements in semiconductor growth techniques which have produced an expanding range of high quality heterostructures for new semiconductor devises. As the dimensions of such structures approach the nanometer level, it becomes increasingly important to characterise materials properties such as composition uniformity, strain, interface sharpness and roughness and the nature of defects, as well as their influence on electrical and optical properties. Much of this information is being obtained by electron microscopy and this is also an area of rapid progress. There have been advances for thin film studies across a wide range of techniques, including, for example, convergent beam electron diffraction, X-ray and electron energy loss microanalysis and high spatial resolution cathodoluminescence as well as by conventional and high resolution methods. Important develop ments have also occurred in the study of surfaces and film growth phenomena by both microscopy and diffraction techniques. With these developments in mind, an application was made to the NATO Science Committee in late summer 1987 to fund an Advanced Research Work shop to review the electron microscopy of advanced semiconductors. This was subsequently accepted for the 1988 programme and became the "NATO Advanced Research Workshop on the Evaluation of Advanced Semiconductor Materials by Electron Microscopy". The Workshop took place in the pleasant and intimate surroundings of Wills Hall, Bristol, UK, during the week 11-17 September 1988 and was attended by fifty-five participants from fourteen countries.