Advanced R Solutions
Title | Advanced R Solutions PDF eBook |
Author | Malte Grosser |
Publisher | CRC Press |
Pages | 279 |
Release | 2021-08-24 |
Genre | Mathematics |
ISBN | 1000409090 |
This book offers solutions to all 284 exercises in Advanced R, Second Edition. All the solutions have been carefully documented and made to be as clear and accessible as possible. Working through the exercises and their solutions will give you a deeper understanding of a variety of programming challenges, many of which are relevant to everyday work. This will expand your set of tools on a technical and conceptual level. You will be able to transfer many of the specific programming schemes directly and will discover far more elegant solutions to everyday problems. Features: When R creates copies, and how it affects memory usage and code performance Everything you could ever want to know about functions The differences between calling and exiting handlers How to employ functional programming to solve modular tasks The motivation, mechanics, usage, and limitations of R's highly pragmatic S3 OO system The R6 OO system, which is more like OO programming in other languages The rules that R uses to parse and evaluate expressions How to use metaprogramming to generate HTML or LaTeX with elegant R code How to identify and resolve performance bottlenecks
Advanced R, Second Edition
Title | Advanced R, Second Edition PDF eBook |
Author | Hadley Wickham |
Publisher | CRC Press |
Pages | 568 |
Release | 2019-05-24 |
Genre | Mathematics |
ISBN | 1351201298 |
Advanced R helps you understand how R works at a fundamental level. It is designed for R programmers who want to deepen their understanding of the language, and programmers experienced in other languages who want to understand what makes R different and special. This book will teach you the foundations of R; three fundamental programming paradigms (functional, object-oriented, and metaprogramming); and powerful techniques for debugging and optimising your code. By reading this book, you will learn: The difference between an object and its name, and why the distinction is important The important vector data structures, how they fit together, and how you can pull them apart using subsetting The fine details of functions and environments The condition system, which powers messages, warnings, and errors The powerful functional programming paradigm, which can replace many for loops The three most important OO systems: S3, S4, and R6 The tidy eval toolkit for metaprogramming, which allows you to manipulate code and control evaluation Effective debugging techniques that you can deploy, regardless of how your code is run How to find and remove performance bottlenecks The second edition is a comprehensive update: New foundational chapters: "Names and values," "Control flow," and "Conditions" comprehensive coverage of object oriented programming with chapters on S3, S4, R6, and how to choose between them Much deeper coverage of metaprogramming, including the new tidy evaluation framework use of new package like rlang (http://rlang.r-lib.org), which provides a clean interface to low-level operations, and purr (http://purrr.tidyverse.org/) for functional programming Use of color in code chunks and figures Hadley Wickham is Chief Scientist at RStudio, an Adjunct Professor at Stanford University and the University of Auckland, and a member of the R Foundation. He is the lead developer of the tidyverse, a collection of R packages, including ggplot2 and dplyr, designed to support data science. He is also the author of R for Data Science (with Garrett Grolemund), R Packages, and ggplot2: Elegant Graphics for Data Analysis.
Javascript for R
Title | Javascript for R PDF eBook |
Author | John Coene |
Publisher | CRC Press |
Pages | 316 |
Release | 2021-07-15 |
Genre | Business & Economics |
ISBN | 1000408175 |
Little known to many, R works just as well with JavaScript—this book delves into the various ways both languages can work together. The ultimate aim of this work is to put the reader at ease with inviting JavaScript in their data science workflow. In that respect the book is not teaching one JavaScript but rather we show how little JavaScript can greatly support and enhance R code. Therefore, the focus is on integrating external JavaScript libraries and no prior knowledge of JavaScript is required. Key Features: ● Easy to pick up. ● An entry way to learning JavaScript for R. ● Covers topics not covered anywhere else. ● Easy to follow along.
Learn R
Title | Learn R PDF eBook |
Author | Pedro J. Aphalo |
Publisher | CRC Press |
Pages | 466 |
Release | 2024-04-26 |
Genre | Computers |
ISBN | 1040013074 |
Learning a computer language like R can be either frustrating, fun or boring. Having fun requires challenges that wake up the learner’s curiosity but also provide an emotional reward for overcoming them. The book is designed so that it includes smaller and bigger challenges, in what I call playgrounds, in the hope that all readers will enjoy their path to R fluency. Fluency in the use of a language is a skill that is acquired through practice and exploration. For students and professionals in the biological sciences, humanities and many applied fields, recognizing the parallels between R and natural languages should help them feel at home with R. The approach I use is similar to that of a travel guide, encouraging exploration and describing the available alternatives and how to reach them. The intention is to guide the reader through the R landscape of 2024 and beyond. What is new in the second edition? Text expanded by more than 25% to include additional R features and gentler and more detailed explanations Contains 24 new diagrams and flowcharts, seven new tables, and revised text and code examples for clarity All three indexes were expanded, and answers to 28 frequently asked questions added What will you find in this book? Programming concepts explained as they apply to current R Emphasis on the role of abstractions in programming Few prescriptive rules—mostly the author’s preferences together with alternatives Presentation of the R language emphasizing the “R way of doing things” Tutoring for “programming in the small” using scripts for data analysis Explanation of the differences between R proper and extensions for data wrangling The grammar of graphics is described as a language for the construction of data visualisations Examples of data exchange between R and the foreign world using common file formats Coaching to become an independent R user, capable of writing original scripts and solving future challenges
ANOVA and Mixed Models
Title | ANOVA and Mixed Models PDF eBook |
Author | Lukas Meier |
Publisher | CRC Press |
Pages | 202 |
Release | 2022-11-04 |
Genre | Mathematics |
ISBN | 1000776735 |
ANOVA and Mixed Models: A Short Introduction Using R provides both the practitioner and researcher a compact introduction to the analysis of data from the most popular experimental designs. Based on knowledge from an introductory course on probability and statistics, the theoretical foundations of the most important models are introduced. The focus is on an intuitive understanding of the theory, common pitfalls in practice, and the application of the methods in R. From data visualization and model fitting, up to the interpretation of the corresponding output, the whole workflow is presented using R. The book does not only cover standard ANOVA models, but also models for more advanced designs and mixed models, which are common in many practical applications. Features Accessible to readers with a basic background in probability and statistics Covers fundamental concepts of experimental design and cause-effect relationships Introduces classical ANOVA models, including contrasts and multiple testing Provides an example-based introduction to mixed models Features basic concepts of split-plot and incomplete block designs R code available for all steps Supplementary website with additional resources and updates are available here. This book is primarily aimed at students, researchers, and practitioners from all areas who wish to analyze corresponding data with R. Readers will learn a broad array of models hand-in-hand with R, including the applications of some of the most important add-on packages.
Tidy Finance with R
Title | Tidy Finance with R PDF eBook |
Author | Christoph Scheuch |
Publisher | CRC Press |
Pages | 275 |
Release | 2023-04-05 |
Genre | Business & Economics |
ISBN | 1000858782 |
This textbook shows how to bring theoretical concepts from finance and econometrics to the data. Focusing on coding and data analysis with R, we show how to conduct research in empirical finance from scratch. We start by introducing the concepts of tidy data and coding principles using the tidyverse family of R packages. We then provide the code to prepare common open source and proprietary financial data sources (CRSP, Compustat, Mergent FISD, TRACE) and organize them in a database. We reuse these data in all the subsequent chapters, which we keep as self-contained as possible. The empirical applications range from key concepts of empirical asset pricing (beta estimation, portfolio sorts, performance analysis, Fama-French factors) to modeling and machine learning applications (fixed effects estimation, clustering standard errors, difference-in-difference estimators, ridge regression, Lasso, Elastic net, random forests, neural networks) and portfolio optimization techniques. Highlights 1. Self-contained chapters on the most important applications and methodologies in finance, which can easily be used for the reader’s research or as a reference for courses on empirical finance. 2. Each chapter is reproducible in the sense that the reader can replicate every single figure, table, or number by simply copy-pasting the code we provide. 3. A full-fledged introduction to machine learning with tidymodels based on tidy principles to show how factor selection and option pricing can benefit from Machine Learning methods. 4. Chapter 2 on accessing and managing financial data shows how to retrieve and prepare the most important datasets in the field of financial economics: CRSP and Compustat. The chapter also contains detailed explanations of the most relevant data characteristics. 5. Each chapter provides exercises that are based on established lectures and exercise classes and which are designed to help students to dig deeper. The exercises can be used for self-studying or as a source of inspiration for teaching exercises.
Signal
Title | Signal PDF eBook |
Author | |
Publisher | |
Pages | 854 |
Release | 2010 |
Genre | Armed Forces |
ISBN |