Advanced Numerical and Semi-Analytical Methods for Differential Equations

Advanced Numerical and Semi-Analytical Methods for Differential Equations
Title Advanced Numerical and Semi-Analytical Methods for Differential Equations PDF eBook
Author Snehashish Chakraverty
Publisher John Wiley & Sons
Pages 256
Release 2019-03-20
Genre Mathematics
ISBN 1119423449

Download Advanced Numerical and Semi-Analytical Methods for Differential Equations Book in PDF, Epub and Kindle

Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Advanced Numerical and Semi-Analytical Methods for Differential Equations

Advanced Numerical and Semi-Analytical Methods for Differential Equations
Title Advanced Numerical and Semi-Analytical Methods for Differential Equations PDF eBook
Author Snehashish Chakraverty
Publisher John Wiley & Sons
Pages 256
Release 2019-04-16
Genre Mathematics
ISBN 1119423422

Download Advanced Numerical and Semi-Analytical Methods for Differential Equations Book in PDF, Epub and Kindle

Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Advanced Numerical Methods for Differential Equations

Advanced Numerical Methods for Differential Equations
Title Advanced Numerical Methods for Differential Equations PDF eBook
Author Harendra Singh
Publisher CRC Press
Pages 245
Release 2021-06-25
Genre Mathematics
ISBN 1000381110

Download Advanced Numerical Methods for Differential Equations Book in PDF, Epub and Kindle

Mathematical models are used to convert real-life problems using mathematical concepts and language. These models are governed by differential equations whose solutions make it easy to understand real-life problems and can be applied to engineering and science disciplines. This book presents numerical methods for solving various mathematical models. This book offers real-life applications, includes research problems on numerical treatment, and shows how to develop the numerical methods for solving problems. The book also covers theory and applications in engineering and science. Engineers, mathematicians, scientists, and researchers working on real-life mathematical problems will find this book useful.

Numerical Analysis of Partial Differential Equations

Numerical Analysis of Partial Differential Equations
Title Numerical Analysis of Partial Differential Equations PDF eBook
Author S. H, Lui
Publisher John Wiley & Sons
Pages 506
Release 2012-01-10
Genre Mathematics
ISBN 1118111117

Download Numerical Analysis of Partial Differential Equations Book in PDF, Epub and Kindle

A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

A First Course in Ordinary Differential Equations

A First Course in Ordinary Differential Equations
Title A First Course in Ordinary Differential Equations PDF eBook
Author Martin Hermann
Publisher Springer Science & Business
Pages 300
Release 2014-04-22
Genre Mathematics
ISBN 8132218353

Download A First Course in Ordinary Differential Equations Book in PDF, Epub and Kindle

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.

Computational Fractional Dynamical Systems

Computational Fractional Dynamical Systems
Title Computational Fractional Dynamical Systems PDF eBook
Author Snehashish Chakraverty
Publisher John Wiley & Sons
Pages 276
Release 2022-11-15
Genre Mathematics
ISBN 111969695X

Download Computational Fractional Dynamical Systems Book in PDF, Epub and Kindle

A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution. Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. Covers various aspects of efficient methods regarding fractional-order systems Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering Provides a systematic approach for handling fractional-order models arising in science and engineering Incorporates a wide range of methods with corresponding results and validation Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.

Fourier Series and Numerical Methods for Partial Differential Equations

Fourier Series and Numerical Methods for Partial Differential Equations
Title Fourier Series and Numerical Methods for Partial Differential Equations PDF eBook
Author Richard Bernatz
Publisher John Wiley & Sons
Pages 336
Release 2010-07-30
Genre Mathematics
ISBN 0470651377

Download Fourier Series and Numerical Methods for Partial Differential Equations Book in PDF, Epub and Kindle

The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.