Advanced Nanomaterials and Their Applications in Renewable Energy

Advanced Nanomaterials and Their Applications in Renewable Energy
Title Advanced Nanomaterials and Their Applications in Renewable Energy PDF eBook
Author Tian-Hao Yan
Publisher Elsevier
Pages 370
Release 2022-07-30
Genre Architecture
ISBN 0323917135

Download Advanced Nanomaterials and Their Applications in Renewable Energy Book in PDF, Epub and Kindle

Advanced Nanomaterials and Their Applications in Renewable Energy, Second Edition presents timely topics related to nanomaterials' feasible synthesis and characterization and their application in the energy fields. The book examines the broader aspects of energy use, including environmental effects of disposal of Li-ion and Na batteries and reviews the main energy sources of today and tomorrow, from fossil fuels to biomass, hydropower, storage power and solar energy. The monograph treats energy carriers globally in terms of energy storage, transmission, and distribution, addresses fuel cell-based solutions in transportation, industrial, and residential building, considers synergistic systems, and more. This new edition also offers updated statistical data and references; a new chapter on the synchronous x-ray based analysis techniques and electron tomography, and if waste disposal of energy materials pose a risk to the microorganism in water, and land use; expanding coverage of renewable energy from the first edition; with newer color illustrations. Provides a comprehensive review of solar energy, fuel cells and gas storage from 2010 to the present Reviews feasible synthesis and modern analytical techniques used in alternative energy Explores examples of research in alternative energy, including current assessments of nanomaterials and safety Contains a glossary of terms, units and historical benchmarks Presents a useful guide that will bring readers up-to-speed on historical developments in alternative fuel cells

Renewable and Clean Energy Systems Based on Advanced Nanomaterials

Renewable and Clean Energy Systems Based on Advanced Nanomaterials
Title Renewable and Clean Energy Systems Based on Advanced Nanomaterials PDF eBook
Author Sahar Zinatloo-Ajabshir
Publisher Elsevier
Pages 400
Release 2024-07-15
Genre Science
ISBN 0443139490

Download Renewable and Clean Energy Systems Based on Advanced Nanomaterials Book in PDF, Epub and Kindle

Renewable and Clean Energy Systems Based on Advanced Nanomaterials: Basis, Preparation and Applications describes the fundamental aspects of a diverse range of nanomaterials used in the fields of renewable and clean energy. Various methods of preparing several different nanomaterials for green energy systems, such as advanced nanomaterials for solar cells, mixed metal oxide-based nanomaterials for hydrogen storage, and active nanomaterials for Li ion batteries are presented along with their advantages, disadvantages, and applications. Chapters also discuss novel methods of power analysis, frequency regulation methods, practical applications of solar panels, economic efficiency of solar energy, solar physics, and much more. This is a valuable resource on the basic science, preparation methods, and practical applications of advanced nanomaterials for green energy systems. Features recent advances on nanomaterials preparation methods and their applications in photovoltaic technology Discusses sustainable strategies for producing large-scale nanomaterials, focusing on preparation techniques that are cost-effective and eco-friendly Reviews the efficiency of nanomaterials used in solar energy storage and conversion

Nanomaterials for Green Energy

Nanomaterials for Green Energy
Title Nanomaterials for Green Energy PDF eBook
Author Bharat A. Bhanvase
Publisher Elsevier
Pages 502
Release 2018-04-18
Genre Science
ISBN 0128137320

Download Nanomaterials for Green Energy Book in PDF, Epub and Kindle

Nanomaterials for Green Energy focuses on the synthesis, characterization and application of novel nanomaterials in the fields of green science and technology. This book contains fundamental information about the properties of novel nanomaterials and their application in green energy. In particular, synthesis and characterization of novel nanomaterials, their application in solar and fuel cells and batteries, and nanomaterials for a low-toxicity environment are discussed. It will provide an important reference resource for researchers in materials science and renewable energy who wish to learn more about how nanomaterials are used to create cheaper, more efficient green energy products. Provides fundamental information about the properties and application of new low-cost nanomaterials for green energy Shows how novel nanomaterials are used to create more efficient solar cells Offers solutions to common problems related to the use of materials in the development of energy- related technologies

Advanced Nanomaterials for Catalysis and Energy

Advanced Nanomaterials for Catalysis and Energy
Title Advanced Nanomaterials for Catalysis and Energy PDF eBook
Author Vladislav A. Sadykov
Publisher Elsevier
Pages 590
Release 2018-08-27
Genre Technology & Engineering
ISBN 012814808X

Download Advanced Nanomaterials for Catalysis and Energy Book in PDF, Epub and Kindle

Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. Outlines synthetic and characterization methods for nanocatalysts Relates nanocatalysts' properties to their specific applications Proposes optimization methods aiming at specific applications

Advanced Nanomaterials for Membrane Synthesis and Its Applications

Advanced Nanomaterials for Membrane Synthesis and Its Applications
Title Advanced Nanomaterials for Membrane Synthesis and Its Applications PDF eBook
Author Woei Jye Lau
Publisher Elsevier
Pages 344
Release 2018-11-21
Genre Medical
ISBN 0128145048

Download Advanced Nanomaterials for Membrane Synthesis and Its Applications Book in PDF, Epub and Kindle

Advanced Nanomaterials for Membrane Synthesis and Its Applications provides the academic and industrial communities the most up-to-date information on the latest trends in membrane nanomaterials and membrane nanotechnology used in wastewater treatment, environmental technology and energy. The rapid advances in nanomaterials and nanotechnology development over the past decade have resulted in significant growth of the membrane business for various industrial processes, particularly in nanotechnology-based membrane processes. While membrane technology is increasingly being used for liquid and gas separations, it has great potential in a variety of additional applications. As the worldwide academic community has a strong interest in advanced membrane processes, particularly membrane nanotechnology for specific separations, this book provides a timely update on the topic. Presents a unique focus on the use of advanced nanomaterials in membrane fabrication/modification, and in the description of membrane nanotechnologies, such as nanofiltration, thin film nanocomposites and nanofibers for various applications Describes next generation membranes, providing first resource details on the development and commercialization stages of these new membranes Represents the state-of-the-art on the use of nanomaterials in membrane science

Nanomaterials for Solar Cell Applications

Nanomaterials for Solar Cell Applications
Title Nanomaterials for Solar Cell Applications PDF eBook
Author Sabu Thomas
Publisher Elsevier
Pages 760
Release 2019-06-12
Genre Technology & Engineering
ISBN 0128133384

Download Nanomaterials for Solar Cell Applications Book in PDF, Epub and Kindle

Nanomaterials for Solar Cell Applications provides a review of recent developments in the field of nanomaterials based solar cells. It begins with a discussion of the fundamentals of nanomaterials for solar calls, including a discussion of lifecycle assessments and characterization techniques. Next, it reviews various types of solar cells, i.e., Thin film, Metal-oxide, Nanowire, Nanorod and Nanoporous materials, and more. Other topics covered include a review of quantum dot sensitized and perovskite and polymer nanocomposites-based solar cells. This book is an ideal resource for those working in this evolving field of nanomaterials and renewable energy. Provides a well-organized approach to the use of nanomaterials for solar cell applications Discusses the synthesis, characterization and applications of traditional and new material Includes coverage of emerging nanomaterials, such as graphene, graphene-derivatives and perovskites

Advanced Nanomaterials for High-Efficiency Solar Cells

Advanced Nanomaterials for High-Efficiency Solar Cells
Title Advanced Nanomaterials for High-Efficiency Solar Cells PDF eBook
Author
Publisher
Pages
Release 2013
Genre
ISBN

Download Advanced Nanomaterials for High-Efficiency Solar Cells Book in PDF, Epub and Kindle

Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp2 carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO2-CdS NPs, and reduced graphene oxide (RGO)-SnO2 NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these nanomaterials in solar cells (both as photoanodes and counter electrodes), gas sensors, and energy storage devices. This research is potentially transformative since the availability of affordable hybrid nanostructures and their fundamental properties will enable various innovative applications of the multifunctional hybrid nanostructures and thus will accelerate new discoveries and inventions in nanoscience and nanotechnology.