The SAGE Handbook of Regression Analysis and Causal Inference
Title | The SAGE Handbook of Regression Analysis and Causal Inference PDF eBook |
Author | Henning Best |
Publisher | SAGE |
Pages | 425 |
Release | 2013-12-20 |
Genre | Social Science |
ISBN | 1473908353 |
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
Bayesian Nonparametrics
Title | Bayesian Nonparametrics PDF eBook |
Author | Nils Lid Hjort |
Publisher | Cambridge University Press |
Pages | 309 |
Release | 2010-04-12 |
Genre | Mathematics |
ISBN | 1139484605 |
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Data Analysis Using Regression and Multilevel/Hierarchical Models
Title | Data Analysis Using Regression and Multilevel/Hierarchical Models PDF eBook |
Author | Andrew Gelman |
Publisher | Cambridge University Press |
Pages | 654 |
Release | 2007 |
Genre | Mathematics |
ISBN | 9780521686891 |
This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Regression and Other Stories
Title | Regression and Other Stories PDF eBook |
Author | Andrew Gelman |
Publisher | Cambridge University Press |
Pages | 551 |
Release | 2021 |
Genre | Business & Economics |
ISBN | 110702398X |
A practical approach to using regression and computation to solve real-world problems of estimation, prediction, and causal inference.
Causal Inference
Title | Causal Inference PDF eBook |
Author | Miquel A. Hernan |
Publisher | CRC Press |
Pages | 352 |
Release | 2019-07-07 |
Genre | Medical |
ISBN | 9781420076165 |
The application of causal inference methods is growing exponentially in fields that deal with observational data. Written by pioneers in the field, this practical book presents an authoritative yet accessible overview of the methods and applications of causal inference. With a wide range of detailed, worked examples using real epidemiologic data as well as software for replicating the analyses, the text provides a thorough introduction to the basics of the theory for non-time-varying treatments and the generalization to complex longitudinal data.
Bayesian Data Analysis, Third Edition
Title | Bayesian Data Analysis, Third Edition PDF eBook |
Author | Andrew Gelman |
Publisher | CRC Press |
Pages | 677 |
Release | 2013-11-01 |
Genre | Mathematics |
ISBN | 1439840954 |
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Title | Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives PDF eBook |
Author | Andrew Gelman |
Publisher | John Wiley & Sons |
Pages | 448 |
Release | 2004-09-03 |
Genre | Mathematics |
ISBN | 9780470090435 |
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.