Advanced Memristor Modeling

Advanced Memristor Modeling
Title Advanced Memristor Modeling PDF eBook
Author Valeri Mladenov
Publisher MDPI
Pages 184
Release 2019-02-19
Genre Technology & Engineering
ISBN 3038971049

Download Advanced Memristor Modeling Book in PDF, Epub and Kindle

The investigation of new memory schemes, neural networks, computer systems and many other improved electronic devices is very important for future generation's electronic circuits and for their widespread application in all the areas of industry. In this aspect the analysis of new efficient and advanced electronic elements and circuits is an essential field of the highly developed electrical and electronic engineering. The resistance-switching phenomenon, observed in many amorphous oxides has been investigated since 1970 and it is a promising technology for constructing new electronic memories. It has been established that such oxide materials have the ability for changing their conductance in accordance to the applied voltage and memorizing their state for a long-time interval. Similar behaviour has been predicted for the memristor element by Leon Chua in 1971. The memristor is proposed in accordance to symmetry considerations and the relationships between the four basic electric quantities - electric current i, voltage v, charge q and magnetic flux Ψ. The memristor is an essential passive one-port element together with the resistor, inductor, and capacitor. The Williams HP research group has made a link between resistive switching devices, and the memristor proposed by Chua. A number of scientific papers related to memristors and memristor devices have been issued and several memristor models have been proposed. The memristor is a highly nonlinear component. It relates the electric charge q and the flux linkage, expressed as a time integral of the voltage. The memristor element has the important capability for remembering the electric charge passed through its cross-section and its respective resistance, when the electrical signals are switched off. Due to its nano-scale dimensions, non-volatility and memorizing properties, the memristor is a sound potential candidate for application in computer high-density memories, artificial neural networks and in many other electronic devices.

Advanced Memristor Modeling: Memristor Circuits and Networks

Advanced Memristor Modeling: Memristor Circuits and Networks
Title Advanced Memristor Modeling: Memristor Circuits and Networks PDF eBook
Author
Publisher
Pages
Release 2019
Genre
ISBN 9783038971030

Download Advanced Memristor Modeling: Memristor Circuits and Networks Book in PDF, Epub and Kindle

Nanoelectronic Devices for Hardware and Software Security

Nanoelectronic Devices for Hardware and Software Security
Title Nanoelectronic Devices for Hardware and Software Security PDF eBook
Author Arun Kumar Singh
Publisher CRC Press
Pages 353
Release 2021-10-31
Genre Technology & Engineering
ISBN 1000464989

Download Nanoelectronic Devices for Hardware and Software Security Book in PDF, Epub and Kindle

Nanoelectronic Devices for Hardware and Software Security has comprehensive coverage of the principles, basic concepts, structure, modeling, practices, and circuit applications of nanoelectronics in hardware/software security. It also covers the future research directions in this domain. In this evolving era, nanotechnology is converting semiconductor devices dimensions from micron technology to nanotechnology. Nanoelectronics would be the key enabler for innovation in nanoscale devices, circuits, and systems. The motive for this research book is to provide relevant theoretical frameworks that include device physics, modeling, circuit design, and the latest developments in experimental fabrication in the field of nanotechnology for hardware/software security. There are numerous challenges in the development of models for nanoscale devices (e.g., FinFET, gate-all-around devices, TFET, etc.), short channel effects, fringing effects, high leakage current, and power dissipation, among others. This book will help to identify areas where there are challenges and apply nanodevice and circuit techniques to address hardware/software security issues.

Advanced Computational Paradigms and Hybrid Intelligent Computing

Advanced Computational Paradigms and Hybrid Intelligent Computing
Title Advanced Computational Paradigms and Hybrid Intelligent Computing PDF eBook
Author Tapan Kumar Gandhi
Publisher Springer Nature
Pages 653
Release 2021-12-06
Genre Technology & Engineering
ISBN 9811643695

Download Advanced Computational Paradigms and Hybrid Intelligent Computing Book in PDF, Epub and Kindle

This book presents high-quality, peer-reviewed papers from the Third International Conference on Advanced Computational and Communication Paradigms (ICACCP 2021), organized by Department of Computer Science and Engineering (CSE), Sikkim Manipal Institute of Technology (SMIT), Sikkim, India during 22 – 24 March 2021. ICACCP 2021 covers an advanced computational paradigms and communications technique which provides failsafe and robust solutions to the emerging problems faced by mankind. Technologists, scientists, industry professionals and research scholars from regional, national and international levels are invited to present their original unpublished work in this conference.

Advances in Memristors, Memristive Devices and Systems

Advances in Memristors, Memristive Devices and Systems
Title Advances in Memristors, Memristive Devices and Systems PDF eBook
Author Sundarapandian Vaidyanathan
Publisher Springer
Pages 513
Release 2017-02-15
Genre Technology & Engineering
ISBN 3319517244

Download Advances in Memristors, Memristive Devices and Systems Book in PDF, Epub and Kindle

This book reports on the latest advances in and applications of memristors, memristive devices and systems. It gathers 20 contributed chapters by subject experts, including pioneers in the field such as Leon Chua (UC Berkeley, USA) and R.S. Williams (HP Labs, USA), who are specialized in the various topics addressed in this book, and covers broad areas of memristors and memristive devices such as: memristor emulators, oscillators, chaotic and hyperchaotic memristive systems, control of memristive systems, memristor-based min-max circuits, canonic memristors, memristive-based neuromorphic applications, implementation of memristor-based chaotic oscillators, inverse memristors, linear memristor devices, delayed memristive systems, flux-controlled memristive emulators, etc. Throughout the book, special emphasis is given to papers offering practical solutions and design, modeling, and implementation insights to address current research problems in memristors, memristive devices and systems. As such, it offers a valuable reference book on memristors and memristive devices for graduate students and researchers with a basic knowledge of electrical and control systems engineering.

Advances in Neuromorphic Memristor Science and Applications

Advances in Neuromorphic Memristor Science and Applications
Title Advances in Neuromorphic Memristor Science and Applications PDF eBook
Author Robert Kozma
Publisher Springer Science & Business Media
Pages 318
Release 2012-06-28
Genre Medical
ISBN 9400744919

Download Advances in Neuromorphic Memristor Science and Applications Book in PDF, Epub and Kindle

Physical implementation of the memristor at industrial scale sparked the interest from various disciplines, ranging from physics, nanotechnology, electrical engineering, neuroscience, to intelligent robotics. As any promising new technology, it has raised hopes and questions; it is an extremely challenging task to live up to the high expectations and to devise revolutionary and feasible future applications for memristive devices. The possibility of gathering prominent scientists in the heart of the Silicon Valley given by the 2011 International Joint Conference on Neural Networks held in San Jose, CA, has offered us the unique opportunity of organizing a series of special events on the present status and future perspectives in neuromorphic memristor science. This book presents a selection of the remarkable contributions given by the leaders of the field and it may serve as inspiration and future reference to all researchers that want to explore the extraordinary possibilities given by this revolutionary concept.

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
Title Memristors for Neuromorphic Circuits and Artificial Intelligence Applications PDF eBook
Author Jordi Suñé
Publisher MDPI
Pages 244
Release 2020-04-09
Genre Technology & Engineering
ISBN 3039285769

Download Memristors for Neuromorphic Circuits and Artificial Intelligence Applications Book in PDF, Epub and Kindle

Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.