Advanced Mathematics for Applications

Advanced Mathematics for Applications
Title Advanced Mathematics for Applications PDF eBook
Author Andrea Prosperetti
Publisher Cambridge University Press
Pages 743
Release 2011-01-06
Genre Mathematics
ISBN 1139492683

Download Advanced Mathematics for Applications Book in PDF, Epub and Kindle

The partial differential equations that govern scalar and vector fields are the very language used to model a variety of phenomena in solid mechanics, fluid flow, acoustics, heat transfer, electromagnetism and many others. A knowledge of the main equations and of the methods for analyzing them is therefore essential to every working physical scientist and engineer. Andrea Prosperetti draws on many years' research experience to produce a guide to a wide variety of methods, ranging from classical Fourier-type series through to the theory of distributions and basic functional analysis. Theorems are stated precisely and their meaning explained, though proofs are mostly only sketched, with comments and examples being given more prominence. The book structure does not require sequential reading: each chapter is self-contained and users can fashion their own path through the material. Topics are first introduced in the context of applications, and later complemented by a more thorough presentation.

Wavelets

Wavelets
Title Wavelets PDF eBook
Author John J. Benedetto
Publisher CRC Press
Pages 586
Release 2021-07-28
Genre Mathematics
ISBN 1000443469

Download Wavelets Book in PDF, Epub and Kindle

Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.

Advanced Mathematics for Engineers with Applications in Stochastic Processes

Advanced Mathematics for Engineers with Applications in Stochastic Processes
Title Advanced Mathematics for Engineers with Applications in Stochastic Processes PDF eBook
Author Aliakbar Montazer Haghighi
Publisher Nova Science Publishers
Pages 0
Release 2010
Genre Functions of several complex variables
ISBN 9781608768806

Download Advanced Mathematics for Engineers with Applications in Stochastic Processes Book in PDF, Epub and Kindle

Topics in advanced mathematics for engineers, probability and statistics typically span three subject areas, are addressed in three separate textbooks and taught in three different courses in as many as three semesters. Due to this arrangement, students taking these courses have had to shelf some important and fundamental engineering courses until much later than is necessary. This practice has generally ignored some striking relations that exist between the seemingly separate areas of statistical concepts, such as moments and estimation of Poisson distribution parameters. On one hand, these concepts commonly appear in stochastic processes -- for instance, in measures on effectiveness in queuing models. On the other hand, they can also be viewed as applied probability in engineering disciplines -- mechanical, chemical, and electrical, as well as in engineering technology. There is obviously, an urgent need for a textbook that recognises the corresponding relationships between the various areas and a matching cohesive course that will see through to their fundamental engineering courses as early as possible. This book is designed to achieve just that. Its seven chapters, while retaining their individual integrity, flow from selected topics in advanced mathematics such as complex analysis and wavelets to probability, statistics and stochastic processes.

Advanced Mathematics and Mechanics Applications Using MATLAB

Advanced Mathematics and Mechanics Applications Using MATLAB
Title Advanced Mathematics and Mechanics Applications Using MATLAB PDF eBook
Author David Halpern
Publisher CRC Press
Pages 697
Release 2002-09-17
Genre Mathematics
ISBN 1420035444

Download Advanced Mathematics and Mechanics Applications Using MATLAB Book in PDF, Epub and Kindle

Since its introduction in 1984, MATLAB's ever-growing popularity and functionality have secured its position as an industry-standard software package. The user-friendly, interactive environment of MATLAB 6.x, which includes a high-level programming language, versatile graphics capabilities, and abundance of intrinsic functions, helps users focus on

Fundamentals of Advanced Mathematics V2

Fundamentals of Advanced Mathematics V2
Title Fundamentals of Advanced Mathematics V2 PDF eBook
Author Henri Bourles
Publisher Elsevier
Pages 362
Release 2018-02-03
Genre Mathematics
ISBN 0081023855

Download Fundamentals of Advanced Mathematics V2 Book in PDF, Epub and Kindle

The three volumes of this series of books, of which this is the second, put forward the mathematical elements that make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. Whereas the first volume focused on the formal conditions for systems of linear equations (in particular of linear differential equations) to have solutions, this book presents the approaches to finding solutions to polynomial equations and to systems of linear differential equations with varying coefficients. Fundamentals of Advanced Mathematics, Volume 2: Field Extensions, Topology and Topological Vector Spaces, Functional Spaces, and Sheaves begins with the classical Galois theory and the theory of transcendental field extensions. Next, the differential side of these theories is treated, including the differential Galois theory (Picard-Vessiot theory of systems of linear differential equations with time-varying coefficients) and differentially transcendental field extensions. The treatment of analysis includes topology (using both filters and nets), topological vector spaces (using the notion of disked space, which simplifies the theory of duality), and the radon measure (assuming that the usual theory of measure and integration is known). In addition, the theory of sheaves is developed with application to the theory of distributions and the theory of hyperfunctions (assuming that the usual theory of functions of the complex variable is known). This volume is the prerequisite to the study of linear systems with time-varying coefficients from the point-of-view of algebraic analysis and the algebraic theory of nonlinear systems. - Present Galois Theory, transcendental field extensions, and Picard - Includes sections on Vessiot theory, differentially transcendental field extensions, topology, topological vector spaces, Radon measure, differential calculus in Banach spaces, sheaves, distributions, hyperfunctions, algebraic analysis, and local analysis of systems of linear differential equations

Advanced Mathematics for Engineering Students

Advanced Mathematics for Engineering Students
Title Advanced Mathematics for Engineering Students PDF eBook
Author Brent J. Lewis
Publisher Butterworth-Heinemann
Pages 434
Release 2021-05-20
Genre Mathematics
ISBN 0128236825

Download Advanced Mathematics for Engineering Students Book in PDF, Epub and Kindle

Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author's university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a "toolbox for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). - Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer - The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) - Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations)

Advanced Mathematics

Advanced Mathematics
Title Advanced Mathematics PDF eBook
Author Stanley J. Farlow
Publisher John Wiley & Sons
Pages 573
Release 2019-10-02
Genre Mathematics
ISBN 1119563534

Download Advanced Mathematics Book in PDF, Epub and Kindle

Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.