Advanced Integration Theory

Advanced Integration Theory
Title Advanced Integration Theory PDF eBook
Author Corneliu Constantinescu
Publisher Springer Science & Business Media
Pages 877
Release 2012-12-06
Genre Mathematics
ISBN 9400708521

Download Advanced Integration Theory Book in PDF, Epub and Kindle

Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book "C. Constantinescu and K. Weber (in collaboration with A.

A Modern Theory of Integration

A Modern Theory of Integration
Title A Modern Theory of Integration PDF eBook
Author Robert G. Bartle
Publisher American Mathematical Society
Pages 474
Release 2024-10-25
Genre Mathematics
ISBN 147047901X

Download A Modern Theory of Integration Book in PDF, Epub and Kindle

The theory of integration is one of the twin pillars on which analysis is built. The first version of integration that students see is the Riemann integral. Later, graduate students learn that the Lebesgue integral is ?better? because it removes some restrictions on the integrands and the domains over which we integrate. However, there are still drawbacks to Lebesgue integration, for instance, dealing with the Fundamental Theorem of Calculus, or with ?improper? integrals. This book is an introduction to a relatively new theory of the integral (called the ?generalized Riemann integral? or the ?Henstock-Kurzweil integral?) that corrects the defects in the classical Riemann theory and both simplifies and extends the Lebesgue theory of integration. Although this integral includes that of Lebesgue, its definition is very close to the Riemann integral that is familiar to students from calculus. One virtue of the new approach is that no measure theory and virtually no topology is required. Indeed, the book includes a study of measure theory as an application of the integral. Part 1 fully develops the theory of the integral of functions defined on a compact interval. This restriction on the domain is not necessary, but it is the case of most interest and does not exhibit some of the technical problems that can impede the reader's understanding. Part 2 shows how this theory extends to functions defined on the whole real line. The theory of Lebesgue measure from the integral is then developed, and the author makes a connection with some of the traditional approaches to the Lebesgue integral. Thus, readers are given full exposure to the main classical results. The text is suitable for a first-year graduate course, although much of it can be readily mastered by advanced undergraduate students. Included are many examples and a very rich collection of exercises. There are partial solutions to approximately one-third of the exercises. A complete solutions manual is available separately.

A Course on Integration Theory

A Course on Integration Theory
Title A Course on Integration Theory PDF eBook
Author Nicolas Lerner
Publisher Springer
Pages 504
Release 2014-07-09
Genre Mathematics
ISBN 3034806949

Download A Course on Integration Theory Book in PDF, Epub and Kindle

This textbook provides a detailed treatment of abstract integration theory, construction of the Lebesgue measure via the Riesz-Markov Theorem and also via the Carathéodory Theorem. It also includes some elementary properties of Hausdorff measures as well as the basic properties of spaces of integrable functions and standard theorems on integrals depending on a parameter. Integration on a product space, change of variables formulas as well as the construction and study of classical Cantor sets are treated in detail. Classical convolution inequalities, such as Young's inequality and Hardy-Littlewood-Sobolev inequality are proven. The Radon-Nikodym theorem, notions of harmonic analysis, classical inequalities and interpolation theorems, including Marcinkiewicz's theorem, the definition of Lebesgue points and Lebesgue differentiation theorem are further topics included. A detailed appendix provides the reader with various elements of elementary mathematics, such as a discussion around the calculation of antiderivatives or the Gamma function. The appendix also provides more advanced material such as some basic properties of cardinals and ordinals which are useful in the study of measurability.​

Geometric Integration Theory

Geometric Integration Theory
Title Geometric Integration Theory PDF eBook
Author Hassler Whitney
Publisher Princeton University Press
Pages 404
Release 2015-12-08
Genre Mathematics
ISBN 1400877571

Download Geometric Integration Theory Book in PDF, Epub and Kindle

A complete theory of integration as it appears in geometric and physical problems must include integration over oriented r-dimensional domains in n-space; both the integrand and the domain may be variable. This is the primary subject matter of the present book, designed to bring out the underlying geometric and analytic ideas and to give clear and complete proofs of the basic theorems. Originally published in 1957. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

A Concise Introduction to the Theory of Integration

A Concise Introduction to the Theory of Integration
Title A Concise Introduction to the Theory of Integration PDF eBook
Author Daniel W Stroock
Publisher World Scientific Publishing Company
Pages 160
Release 1990-03-01
Genre Science
ISBN 9813104333

Download A Concise Introduction to the Theory of Integration Book in PDF, Epub and Kindle

Readership: Mathematicians, physicists and engineers.

Integration - A Functional Approach

Integration - A Functional Approach
Title Integration - A Functional Approach PDF eBook
Author Klaus Bichteler
Publisher Springer Science & Business Media
Pages 203
Release 2010-11-23
Genre Mathematics
ISBN 303480055X

Download Integration - A Functional Approach Book in PDF, Epub and Kindle

This book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might even be useful to the advanced mathematician who is confronted with situations - such as stochastic integration - where the set-measuring approach to integration does not work.

Measure and Integration

Measure and Integration
Title Measure and Integration PDF eBook
Author Heinz König
Publisher Springer Science & Business Media
Pages 277
Release 1997
Genre Mathematics
ISBN 3540618589

Download Measure and Integration Book in PDF, Epub and Kindle

This book aims at restructuring some fundamentals in measure and integration theory. It centers around the ubiquitous task to produce appropriate contents and measures from more primitive data like elementary contents and elementary integrals. It develops the new approach started around 1970 by Topsoe and others into a systematic theory. The theory is much more powerful than the traditional means and has striking implications all over measure theory and beyond.