Geometrical Methods of Mathematical Physics

Geometrical Methods of Mathematical Physics
Title Geometrical Methods of Mathematical Physics PDF eBook
Author Bernard F. Schutz
Publisher Cambridge University Press
Pages 272
Release 1980-01-28
Genre Science
ISBN 1107268141

Download Geometrical Methods of Mathematical Physics Book in PDF, Epub and Kindle

In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.

Geometric Methods and Applications

Geometric Methods and Applications
Title Geometric Methods and Applications PDF eBook
Author Jean Gallier
Publisher Springer Science & Business Media
Pages 584
Release 2012-12-06
Genre Mathematics
ISBN 1461301378

Download Geometric Methods and Applications Book in PDF, Epub and Kindle

As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.

Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases

Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases
Title Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases PDF eBook
Author Zhong-Can Ou-Yang
Publisher World Scientific
Pages 252
Release 1999
Genre Science
ISBN 9789810232481

Download Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases Book in PDF, Epub and Kindle

This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic ? A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations of the rigorous solution of the equation that have been carried out in recent years by the authors and their co-workers are presented here, among which the torus and the discocyte (the normal shape of the human red blood cell) may attract attention in cell biology. Within the framework of our mathematical model by analogy with cholesteric liquid crystals, an extensive investigation is made of the formation of the helical structures in a tilted chiral lipid bilayer, which has now become a hot topic in the fields of soft matter and biomembranes.

Analysis, Geometry, and Modeling in Finance

Analysis, Geometry, and Modeling in Finance
Title Analysis, Geometry, and Modeling in Finance PDF eBook
Author Pierre Henry-Labordere
Publisher CRC Press
Pages 403
Release 2008-09-22
Genre Business & Economics
ISBN 1420087002

Download Analysis, Geometry, and Modeling in Finance Book in PDF, Epub and Kindle

Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available.Through the problem of option pricing, th

Geometric and Algebraic Topological Methods in Quantum Mechanics

Geometric and Algebraic Topological Methods in Quantum Mechanics
Title Geometric and Algebraic Topological Methods in Quantum Mechanics PDF eBook
Author G. Giachetta
Publisher World Scientific
Pages 715
Release 2005
Genre Science
ISBN 9812701265

Download Geometric and Algebraic Topological Methods in Quantum Mechanics Book in PDF, Epub and Kindle

In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry''s geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.

Geometry and Physics

Geometry and Physics
Title Geometry and Physics PDF eBook
Author Jürgen Jost
Publisher Springer Science & Business Media
Pages 226
Release 2009-08-17
Genre Mathematics
ISBN 3642005411

Download Geometry and Physics Book in PDF, Epub and Kindle

"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.

Geometric Methods in Physics XL

Geometric Methods in Physics XL
Title Geometric Methods in Physics XL PDF eBook
Author Piotr Kielanowski
Publisher Springer Nature
Pages 466
Release 2024
Genre Geometry
ISBN 3031624076

Download Geometric Methods in Physics XL Book in PDF, Epub and Kindle

Zusammenfassung: This volume collects papers based on lectures given at the XL Workshop on Geometric Methods in Physics, held in Białowieża, Poland in July 2023. These chapters provide readers an overview of cutting-edge research in infinite-dimensional groups, integrable systems, quantum groups, Lie algebras and their generalizations and a wide variety of other areas. Specific topics include: Yang-Baxter equation The restricted Siegel disc and restricted Grassmannian Geometric and deformation quantization Degenerate integrability Lie algebroids and groupoids Skew braces Geometric Methods in Physics XL will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas