Malware Analysis Using Artificial Intelligence and Deep Learning
Title | Malware Analysis Using Artificial Intelligence and Deep Learning PDF eBook |
Author | Mark Stamp |
Publisher | Springer Nature |
Pages | 651 |
Release | 2020-12-20 |
Genre | Computers |
ISBN | 3030625826 |
This book is focused on the use of deep learning (DL) and artificial intelligence (AI) as tools to advance the fields of malware detection and analysis. The individual chapters of the book deal with a wide variety of state-of-the-art AI and DL techniques, which are applied to a number of challenging malware-related problems. DL and AI based approaches to malware detection and analysis are largely data driven and hence minimal expert domain knowledge of malware is needed. This book fills a gap between the emerging fields of DL/AI and malware analysis. It covers a broad range of modern and practical DL and AI techniques, including frameworks and development tools enabling the audience to innovate with cutting-edge research advancements in a multitude of malware (and closely related) use cases.
ADVANCED DEEP LEARNING FOR MALWARE ANALYSIS
Title | ADVANCED DEEP LEARNING FOR MALWARE ANALYSIS PDF eBook |
Author | Dr.B.Balakumar |
Publisher | SK Research Group of Companies |
Pages | 259 |
Release | 2022-11-15 |
Genre | Computers |
ISBN | 9395341084 |
Dr.B.Balakumar, Assistant Professor, Centre for Information Technology and Engineering, Manonmaniam Sundaranar University, Abhishekapatti, Tirunelveli, Tamil Nadu, India. Dr.J.Syed Nizamudeen Ahmed, Assistant Professor Temp, Centre for Information Technology and Engineering, Manonmaniam Sundaranar University, Abhishekapatti, Tirunelveli, Tamil Nadu, India. Mrs.V.S.Jeyalakshmi, Researcher, Centre for Information Technology and Engineering, Manonmaniam Sundaranar University, Abhishekapatti, Tirunelveli, Tamil Nadu, India. Dr.S.Vijayalakshmi, Assistant Professor Temp, Centre for Information Technology and Engineering, Manonmaniam Sundaranar University, Abhishekapatti, Tirunelveli, Tamil Nadu, India. Mrs.S.Kowsalya , Researcher, Centre for Information Technology and Engineering, Manonmaniam Sundaranar University, Abhishekapatti, Tirunelveli, Tamil Nadu, India.
Advances in Malware and Data-Driven Network Security
Title | Advances in Malware and Data-Driven Network Security PDF eBook |
Author | Gupta, Brij B. |
Publisher | IGI Global |
Pages | 304 |
Release | 2021-11-12 |
Genre | Computers |
ISBN | 1799877914 |
Every day approximately three-hundred thousand to four-hundred thousand new malware are registered, many of them being adware and variants of previously known malware. Anti-virus companies and researchers cannot deal with such a deluge of malware – to analyze and build patches. The only way to scale the efforts is to build algorithms to enable machines to analyze malware and classify and cluster them to such a level of granularity that it will enable humans (or machines) to gain critical insights about them and build solutions that are specific enough to detect and thwart existing malware and generic-enough to thwart future variants. Advances in Malware and Data-Driven Network Security comprehensively covers data-driven malware security with an emphasis on using statistical, machine learning, and AI as well as the current trends in ML/statistical approaches to detecting, clustering, and classification of cyber-threats. Providing information on advances in malware and data-driven network security as well as future research directions, it is ideal for graduate students, academicians, faculty members, scientists, software developers, security analysts, computer engineers, programmers, IT specialists, and researchers who are seeking to learn and carry out research in the area of malware and data-driven network security.
Malware Detection
Title | Malware Detection PDF eBook |
Author | Mihai Christodorescu |
Publisher | Springer Science & Business Media |
Pages | 307 |
Release | 2007-03-06 |
Genre | Computers |
ISBN | 0387445994 |
This book captures the state of the art research in the area of malicious code detection, prevention and mitigation. It contains cutting-edge behavior-based techniques to analyze and detect obfuscated malware. The book analyzes current trends in malware activity online, including botnets and malicious code for profit, and it proposes effective models for detection and prevention of attacks using. Furthermore, the book introduces novel techniques for creating services that protect their own integrity and safety, plus the data they manage.
Malware Data Science
Title | Malware Data Science PDF eBook |
Author | Joshua Saxe |
Publisher | No Starch Press |
Pages | 274 |
Release | 2018-09-25 |
Genre | Computers |
ISBN | 1593278594 |
Malware Data Science explains how to identify, analyze, and classify large-scale malware using machine learning and data visualization. Security has become a "big data" problem. The growth rate of malware has accelerated to tens of millions of new files per year while our networks generate an ever-larger flood of security-relevant data each day. In order to defend against these advanced attacks, you'll need to know how to think like a data scientist. In Malware Data Science, security data scientist Joshua Saxe introduces machine learning, statistics, social network analysis, and data visualization, and shows you how to apply these methods to malware detection and analysis. You'll learn how to: - Analyze malware using static analysis - Observe malware behavior using dynamic analysis - Identify adversary groups through shared code analysis - Catch 0-day vulnerabilities by building your own machine learning detector - Measure malware detector accuracy - Identify malware campaigns, trends, and relationships through data visualization Whether you're a malware analyst looking to add skills to your existing arsenal, or a data scientist interested in attack detection and threat intelligence, Malware Data Science will help you stay ahead of the curve.
Deep Learning Applications for Cyber Security
Title | Deep Learning Applications for Cyber Security PDF eBook |
Author | Mamoun Alazab |
Publisher | Springer |
Pages | 260 |
Release | 2019-08-14 |
Genre | Computers |
ISBN | 3030130576 |
Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.
Security of Information and Networks
Title | Security of Information and Networks PDF eBook |
Author | Atilla Eli |
Publisher | Trafford Publishing |
Pages | 388 |
Release | 2008 |
Genre | Computers |
ISBN | 1425141099 |
This book is a select collection of edited papers from the International Conference on Security of Information and Networks (SIN 2007) on the main theme of Information Assurance, Security, and Public Policy. SIN 2007 was hosted by the Eastern Mediterranean University in Gazimagusa, North Cyprus and co-organized by the Istanbul Technical University, Turkey. While SIN 2007 covered all areas of information and network security, the papers included here focused on the following topics: - cryptology: design and analysis of cryptographic algorithms, hardware and software implementations of cryptographic algorithms, and steganography; - network security: authentication, authorization and access control, privacy, intrusion detection, grid security, and mobile and personal area networks; - IT governance: information security management systems, risk and threat analysis, and information security policies. They represent an interesting mix of innovative academic research and experience reports from practitioners. This is further complemented by a number of invited papers providing excellent overviews: - Elisabeth Oswald, University of Bristol, Bristol, UK: Power Analysis Attack: A Very Brief Introduction; - Marc Joye, Thomson R&D, France: On White-Box Cryptography; - Bart Preneel, Katholieke Universiteit Leuven, Leuven, Belgium: Research Challenges in Cryptology; - Mehmet Ufuk Caglayan, Bogazici University, Turkey: Secure Routing in Ad Hoc Networks and Model Checking. The papers are organized in a logical sequence covering Ciphers; Mobile Agents & Networks; Access Control and Security Assurance; Attacks, Intrusion Detection, and Security Recommendations; and, Security Software, Performance, and Experience.