Advanced Biosignal Processing and Diagnostic Methods
Title | Advanced Biosignal Processing and Diagnostic Methods PDF eBook |
Author | Christoph Hintermüller |
Publisher | BoD – Books on Demand |
Pages | 150 |
Release | 2016-07-21 |
Genre | Computers |
ISBN | 9535125192 |
Personal health and well-being was and is important for all individuals. This includes the way people are living, what they do to stay healthy as well as a profound, well-informed diagnosis and appropriate treatment in case of disease. To achieve these goals, modern medicine is provided with a large variety of tools to assess a patient's health state and collect the information required for a proper diagnosis and treatment, which is tailored to the patient's needs. Many of these available tools use signals either generated by the human body, for example, electroencephalogram (EEG) and electrocardiogram (ECG), or by interacting with the human body while traversing it like microwaves or reflected visible light that is recorded by a video camera. The biosignals recorded by the available and newly developed methods have to be processed to extract the information about the patient's condition and, analyzed tissue and cells. This book presents a small selection of the recent developments in the field of biosignal processing. The covered diagnostic tools and methods include the assessment of respiratory state through gait analysis, the contactless monitoring of cardiovascular and respiratory parameters using microwaves, a non-linear approach to extract the fetal ECG from non-invasive abdominal recordings, identification of epileptic networks from pre-surgical neurophysiological recordings and an improved method to obtain and validate the copy number alterations parameter, which are considered an important marker in cancer classification.
Advanced Biosignal Processing
Title | Advanced Biosignal Processing PDF eBook |
Author | Amine Nait-Ali |
Publisher | Springer Science & Business Media |
Pages | 384 |
Release | 2009-04-21 |
Genre | Technology & Engineering |
ISBN | 354089506X |
Generally speaking, Biosignals refer to signals recorded from the human body. They can be either electrical (e. g. Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), etc. ) or non-electrical (e. g. breathing, movements, etc. ). The acquisition and processing of such signals play an important role in clinical routines. They are usually considered as major indicators which provide clinicians and physicians with useful information during diagnostic and monitoring processes. In some applications, the purpose is not necessarily medical. It may also be industrial. For instance, a real-time EEG system analysis can be used to control and analyze the vigilance of a car driver. In this case, the purpose of such a system basically consists of preventing crash risks. Furthermore, in certain other appli- tions,asetof biosignals (e. g. ECG,respiratorysignal,EEG,etc. ) can be used toc- trol or analyze human emotions. This is the case of the famous polygraph system, also known as the “lie detector”, the ef ciency of which remains open to debate! Thus when one is dealing with biosignals, special attention must be given to their acquisition, their analysis and their processing capabilities which constitute the nal stage preceding the clinical diagnosis. Naturally, the diagnosis is based on the information provided by the processing system.
Advanced Methods in Biomedical Signal Processing and Analysis
Title | Advanced Methods in Biomedical Signal Processing and Analysis PDF eBook |
Author | Kunal Pal |
Publisher | Academic Press |
Pages | 434 |
Release | 2022-09-07 |
Genre | Technology & Engineering |
ISBN | 0323859542 |
Advanced Methods in Biomedical Signal Processing and Analysis presents state-of-the-art methods in biosignal processing, including recurrence quantification analysis, heart rate variability, analysis of the RRI time-series signals, joint time-frequency analyses, wavelet transforms and wavelet packet decomposition, empirical mode decomposition, modeling of biosignals, Gabor Transform, empirical mode decomposition. The book also gives an understanding of feature extraction, feature ranking, and feature selection methods, while also demonstrating how to apply artificial intelligence and machine learning to biosignal techniques. - Gives advanced methods in signal processing - Includes machine and deep learning methods - Presents experimental case studies
Machine Learning in Bio-Signal Analysis and Diagnostic Imaging
Title | Machine Learning in Bio-Signal Analysis and Diagnostic Imaging PDF eBook |
Author | Nilanjan Dey |
Publisher | Academic Press |
Pages | 348 |
Release | 2018-11-30 |
Genre | Science |
ISBN | 012816087X |
Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains
Biomedical Signal Analysis
Title | Biomedical Signal Analysis PDF eBook |
Author | Rangaraj M. Rangayyan |
Publisher | John Wiley & Sons |
Pages | 717 |
Release | 2015-04-24 |
Genre | Science |
ISBN | 1119068010 |
The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications 800 mathematical expressions and equations Practical questions, problems and laboratory exercises Includes fractals and chaos theory with biomedical applications
Biomedical Signal Processing for Healthcare Applications
Title | Biomedical Signal Processing for Healthcare Applications PDF eBook |
Author | Varun Bajaj |
Publisher | CRC Press |
Pages | 336 |
Release | 2021-07-21 |
Genre | Technology & Engineering |
ISBN | 1000413306 |
This book examines the use of biomedical signal processing—EEG, EMG, and ECG—in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.
Biomedical Signal and Image Processing
Title | Biomedical Signal and Image Processing PDF eBook |
Author | Kayvan Najarian |
Publisher | CRC Press |
Pages | 411 |
Release | 2016-04-19 |
Genre | Medical |
ISBN | 1439870349 |
Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based.