Advanced Biometrics with Deep Learning
Title | Advanced Biometrics with Deep Learning PDF eBook |
Author | Andrew Teoh Beng Jin |
Publisher | MDPI |
Pages | 210 |
Release | 2020-12-28 |
Genre | Business & Economics |
ISBN | 303936698X |
Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others.
Advanced Biometrics with Deep Learning
Title | Advanced Biometrics with Deep Learning PDF eBook |
Author | Andrew Jin |
Publisher | |
Pages | 210 |
Release | 2020 |
Genre | |
ISBN | 9783039366996 |
Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others.
Deep Learning Approaches to Cloud Security
Title | Deep Learning Approaches to Cloud Security PDF eBook |
Author | Pramod Singh Rathore |
Publisher | John Wiley & Sons |
Pages | 308 |
Release | 2022-01-26 |
Genre | Technology & Engineering |
ISBN | 1119760526 |
DEEP LEARNING APPROACHES TO CLOUD SECURITY Covering one of the most important subjects to our society today, cloud security, this editorial team delves into solutions taken from evolving deep learning approaches, solutions allowing computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts. Deep learning is the fastest growing field in computer science. Deep learning algorithms and techniques are found to be useful in different areas like automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delay in children. However, applying deep learning techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. This book provides state of the art approaches of deep learning in these areas, including areas of detection and prediction, as well as future framework development, building service systems and analytical aspects. In all these topics, deep learning approaches, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used. This book is intended for dealing with modeling and performance prediction of the efficient cloud security systems, thereby bringing a newer dimension to this rapidly evolving field. This groundbreaking new volume presents these topics and trends of deep learning, bridging the research gap, and presenting solutions to the challenges facing the engineer or scientist every day in this area. Whether for the veteran engineer or the student, this is a must-have for any library. Deep Learning Approaches to Cloud Security: Is the first volume of its kind to go in-depth on the newest trends and innovations in cloud security through the use of deep learning approaches Covers these important new innovations, such as AI, data mining, and other evolving computing technologies in relation to cloud security Is a useful reference for the veteran computer scientist or engineer working in this area or an engineer new to the area, or a student in this area Discusses not just the practical applications of these technologies, but also the broader concepts and theory behind how these deep learning tools are vital not just to cloud security, but society as a whole Audience: Computer scientists, scientists and engineers working with information technology, design, network security, and manufacturing, researchers in computers, electronics, and electrical and network security, integrated domain, and data analytics, and students in these areas
Advanced Pattern Recognition Technologies with Applications to Biometrics
Title | Advanced Pattern Recognition Technologies with Applications to Biometrics PDF eBook |
Author | David Zhang |
Publisher | IGI Global |
Pages | 402 |
Release | 2009 |
Genre | Computers |
ISBN |
"This book focuses on two kinds of advanced biometric recognition technologies, biometric data discrimination and multi-biometrics"--Provided by publisher.
Advanced Biometrics
Title | Advanced Biometrics PDF eBook |
Author | David Zhang |
Publisher | Springer |
Pages | 336 |
Release | 2017-08-08 |
Genre | Technology & Engineering |
ISBN | 3319615459 |
This book describes a range of new biometric technologies, such as high-resolution fingerprint, finger-knuckle-print, multi-spectral backhand, 3D fingerprint, tongueprint, 3D ear, and multi-spectral iris technologies. Further, it introduces readers to efficient feature extraction, matching and fusion algorithms, in addition to developing potential systems of its own. These advanced biometric technologies and methods are divided as follows: 1. High-Resolution Fingerprint Recognition; 2. Finger-Knuckle-Print Verification; 3. Other Hand-Based Biometrics; and 4. New Head-Based Biometrics. Traditional biometric technologies, such as fingerprint, face, iris, and palmprint, have been extensively studied and addressed in many research books. However, all of these technologies have their own advantages and disadvantages, and there is no single type of biometric technology that can be used for all applications. Many new biometric technologies have been developed in recent years, especia lly in response to new applications. The contributions gathered here focus on how to develop a new biometric technology based on the requirements of essential applications, and how to design efficient algorithms that yield better performance.
Deep Learning for Biometrics
Title | Deep Learning for Biometrics PDF eBook |
Author | Bir Bhanu |
Publisher | Springer |
Pages | 0 |
Release | 2018-05-12 |
Genre | Computers |
ISBN | 9783319871288 |
This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined. Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories. Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.
Design and Implementation of Healthcare Biometric Systems
Title | Design and Implementation of Healthcare Biometric Systems PDF eBook |
Author | Kisku, Dakshina Ranjan |
Publisher | IGI Global |
Pages | 315 |
Release | 2019-01-11 |
Genre | Medical |
ISBN | 152257526X |
Healthcare sectors often deal with a large amount of data related to patients’ care and hospital workforce management. Mistakes occur, and the impending results are disastrous for individuals’ personal identity information. However, an innovative and reliable way to safeguard the identity of individuals and provide protection of medical records from criminals is already in effect. Design and Implementation of Healthcare Biometric Systems provides innovative insights into medical identity theft and the benefits behind biometrics technologies that could be offered to protect medical records from hackers and malicious users. The content within this publication represents the work of ASD screening systems, healthcare management, and patient rehabilitation. It is designed for educators, researchers, faculty members, industry practitioners, graduate students, and professionals working with healthcare services and covers topics centered on understanding the practical essence of next-generation healthcare biometrics systems and future research directions.