Advanced Algorithmic Approaches to Medical Image Segmentation
Title | Advanced Algorithmic Approaches to Medical Image Segmentation PDF eBook |
Author | S. Kamaledin Setarehdan |
Publisher | Springer Science & Business Media |
Pages | 661 |
Release | 2012-09-07 |
Genre | Computers |
ISBN | 0857293338 |
Medical imaging is an important topic and plays a key role in robust diagnosis and patient care. It has experienced an explosive growth over the last few years due to imaging modalities such as X-rays, computed tomography (CT), magnetic resonance (MR) imaging, and ultrasound. This book focuses primarily on model-based segmentation techniques, which are applied to cardiac, brain, breast and microscopic cancer cell imaging. It includes contributions from authors working in industry and academia, and presents new material.
Handbook of Medical Imaging
Title | Handbook of Medical Imaging PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 983 |
Release | 2000-10-09 |
Genre | Science |
ISBN | 0080533108 |
In recent years, the remarkable advances in medical imaging instruments have increased their use considerably for diagnostics as well as planning and follow-up of treatment. Emerging from the fields of radiology, medical physics and engineering, medical imaging no longer simply deals with the technology and interpretation of radiographic images. The limitless possibilities presented by computer science and technology, coupled with engineering advances in signal processing, optics and nuclear medicine have created the vastly expanded field of medical imaging. The Handbook of Medical Imaging is the first comprehensive compilation of the concepts and techniques used to analyze and manipulate medical images after they have been generated or digitized. The Handbook is organized in six sections that relate to the main functions needed for processing: enhancement, segmentation, quantification, registration, visualization as well as compression storage and telemedicine. * Internationally renowned authors(Johns Hopkins, Harvard, UCLA, Yale, Columbia, UCSF) * Includes imaging and visualization * Contains over 60 pages of stunning, four-color images
Advanced Machine Vision Paradigms for Medical Image Analysis
Title | Advanced Machine Vision Paradigms for Medical Image Analysis PDF eBook |
Author | Tapan K. Gandhi |
Publisher | Academic Press |
Pages | 310 |
Release | 2020-08-11 |
Genre | Computers |
ISBN | 0128192968 |
Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs. - Explores major emerging trends in technology which are supporting the current advancement of medical image analysis with the help of computational intelligence - Highlights the advancement of conventional approaches in the field of medical image processing - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques, as well as their applications in medical image analysis
Principles And Advanced Methods In Medical Imaging And Image Analysis
Title | Principles And Advanced Methods In Medical Imaging And Image Analysis PDF eBook |
Author | Atam P Dhawan |
Publisher | World Scientific |
Pages | 869 |
Release | 2008-03-17 |
Genre | Medical |
ISBN | 9814476064 |
Computerized medical imaging and image analysis have been the central focus in diagnostic radiology. They provide revolutionalizing tools for the visualization of physiology as well as the understanding and quantitative measurement of physiological parameters. This book offers in-depth knowledge of medical imaging instrumentation and techniques as well as multidimensional image analysis and classification methods for research, education, and applications in computer-aided diagnostic radiology. Internationally renowned researchers and experts in their respective areas provide detailed descriptions of the basic foundation as well as the most recent developments in medical imaging, thus helping readers to understand theoretical and advanced concepts for important research and clinical applications.
Medical Imaging Informatics
Title | Medical Imaging Informatics PDF eBook |
Author | Alex A.T. Bui |
Publisher | Springer Science & Business Media |
Pages | 454 |
Release | 2009-12-01 |
Genre | Technology & Engineering |
ISBN | 1441903852 |
Medical Imaging Informatics provides an overview of this growing discipline, which stems from an intersection of biomedical informatics, medical imaging, computer science and medicine. Supporting two complementary views, this volume explores the fundamental technologies and algorithms that comprise this field, as well as the application of medical imaging informatics to subsequently improve healthcare research. Clearly written in a four part structure, this introduction follows natural healthcare processes, illustrating the roles of data collection and standardization, context extraction and modeling, and medical decision making tools and applications. Medical Imaging Informatics identifies core concepts within the field, explores research challenges that drive development, and includes current state-of-the-art methods and strategies.
Computational Analysis and Deep Learning for Medical Care
Title | Computational Analysis and Deep Learning for Medical Care PDF eBook |
Author | Amit Kumar Tyagi |
Publisher | John Wiley & Sons |
Pages | 532 |
Release | 2021-08-24 |
Genre | Computers |
ISBN | 1119785723 |
The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.
Handbook of Medical Image Computing and Computer Assisted Intervention
Title | Handbook of Medical Image Computing and Computer Assisted Intervention PDF eBook |
Author | S. Kevin Zhou |
Publisher | Academic Press |
Pages | 1074 |
Release | 2019-10-18 |
Genre | Computers |
ISBN | 0128165863 |
Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention