Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems

Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems
Title Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems PDF eBook
Author Jens Lang
Publisher Springer Science & Business Media
Pages 161
Release 2013-06-29
Genre Computers
ISBN 3662044846

Download Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems Book in PDF, Epub and Kindle

Nowadays there is an increasing emphasis on all aspects of adaptively gener ating a grid that evolves with the solution of a PDE. Another challenge is to develop efficient higher-order one-step integration methods which can handle very stiff equations and which allow us to accommodate a spatial grid in each time step without any specific difficulties. In this monograph a combination of both error-controlled grid refinement and one-step methods of Rosenbrock-type is presented. It is my intention to impart the beauty and complexity found in the theoretical investigation of the adaptive algorithm proposed here, in its realization and in solving non-trivial complex problems. I hope that this method will find many more interesting applications. Berlin-Dahlem, May 2000 Jens Lang Acknowledgements I have looked forward to writing this section since it is a pleasure for me to thank all friends who made this work possible and provided valuable input. I would like to express my gratitude to Peter Deuflhard for giving me the oppor tunity to work in the field of Scientific Computing. I have benefited immensly from his help to get the right perspectives, and from his continuous encourage ment and support over several years. He certainly will forgive me the use of Rosenbrock methods rather than extrapolation methods to integrate in time.

Adaptive Numerical Solution of PDEs

Adaptive Numerical Solution of PDEs
Title Adaptive Numerical Solution of PDEs PDF eBook
Author Peter Deuflhard
Publisher Walter de Gruyter
Pages 436
Release 2012-08-31
Genre Mathematics
ISBN 3110283115

Download Adaptive Numerical Solution of PDEs Book in PDF, Epub and Kindle

This book deals with the general topic “Numerical solution of partial differential equations (PDEs)” with a focus on adaptivity of discretizations in space and time. By and large, introductory textbooks like “Numerical Analysis in Modern Scientific Computing” by Deuflhard and Hohmann should suffice as a prerequisite. The emphasis lies on elliptic and parabolic systems. Hyperbolic conservation laws are treated only on an elementary level excluding turbulence. Numerical Analysis is clearly understood as part of Scientific Computing. The focus is on the efficiency of algorithms, i.e. speed, reliability, and robustness, which directly leads to the concept of adaptivity in algorithms. The theoretical derivation and analysis is kept as elementary as possible. Nevertheless required somewhat more sophisticated mathematical theory is summarized in comprehensive form in an appendix. Complex relations are explained by numerous figures and illustrating examples. Non-trivial problems from regenerative energy, nanotechnology, surgery, and physiology are inserted. The text will appeal to graduate students and researchers on the job in mathematics, science, and technology. Conceptually, it has been written as a textbook including exercises and a software list, but at the same time it should be well-suited for self-study.

Programming for Computations - MATLAB/Octave

Programming for Computations - MATLAB/Octave
Title Programming for Computations - MATLAB/Octave PDF eBook
Author Svein Linge
Publisher Springer
Pages 228
Release 2016-08-01
Genre Computers
ISBN 3319324527

Download Programming for Computations - MATLAB/Octave Book in PDF, Epub and Kindle

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

A Primer on Scientific Programming with Python

A Primer on Scientific Programming with Python
Title A Primer on Scientific Programming with Python PDF eBook
Author Hans Petter Langtangen
Publisher Springer
Pages 942
Release 2016-07-28
Genre Computers
ISBN 3662498871

Download A Primer on Scientific Programming with Python Book in PDF, Epub and Kindle

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015

Finite Difference Computing with Exponential Decay Models

Finite Difference Computing with Exponential Decay Models
Title Finite Difference Computing with Exponential Decay Models PDF eBook
Author Hans Petter Langtangen
Publisher Springer
Pages 210
Release 2016-06-10
Genre Computers
ISBN 3319294393

Download Finite Difference Computing with Exponential Decay Models Book in PDF, Epub and Kindle

This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular.

Hierarchical Matrices

Hierarchical Matrices
Title Hierarchical Matrices PDF eBook
Author Mario Bebendorf
Publisher Springer Science & Business Media
Pages 303
Release 2008-06-25
Genre Mathematics
ISBN 3540771476

Download Hierarchical Matrices Book in PDF, Epub and Kindle

Hierarchical matrices are an efficient framework for large-scale fully populated matrices arising, e.g., from the finite element discretization of solution operators of elliptic boundary value problems. In addition to storing such matrices, approximations of the usual matrix operations can be computed with logarithmic-linear complexity, which can be exploited to setup approximate preconditioners in an efficient and convenient way. Besides the algorithmic aspects of hierarchical matrices, the main aim of this book is to present their theoretical background. The book contains the existing approximation theory for elliptic problems including partial differential operators with nonsmooth coefficients. Furthermore, it presents in full detail the adaptive cross approximation method for the efficient treatment of integral operators with non-local kernel functions. The theory is supported by many numerical experiments from real applications.

Adaptive Mesh Refinement - Theory and Applications

Adaptive Mesh Refinement - Theory and Applications
Title Adaptive Mesh Refinement - Theory and Applications PDF eBook
Author Tomasz Plewa
Publisher Springer Science & Business Media
Pages 550
Release 2005-12-20
Genre Mathematics
ISBN 3540270396

Download Adaptive Mesh Refinement - Theory and Applications Book in PDF, Epub and Kindle

Advanced numerical simulations that use adaptive mesh refinement (AMR) methods have now become routine in engineering and science. Originally developed for computational fluid dynamics applications these methods have propagated to fields as diverse as astrophysics, climate modeling, combustion, biophysics and many others. The underlying physical models and equations used in these disciplines are rather different, yet algorithmic and implementation issues facing practitioners are often remarkably similar. Unfortunately, there has been little effort to review the advances and outstanding issues of adaptive mesh refinement methods across such a variety of fields. This book attempts to bridge this gap. The book presents a collection of papers by experts in the field of AMR who analyze past advances in the field and evaluate the current state of adaptive mesh refinement methods in scientific computing.