Adaptive Mesh Refinement - Theory and Applications
Title | Adaptive Mesh Refinement - Theory and Applications PDF eBook |
Author | Tomasz Plewa |
Publisher | Springer Science & Business Media |
Pages | 550 |
Release | 2005-12-20 |
Genre | Mathematics |
ISBN | 3540270396 |
Advanced numerical simulations that use adaptive mesh refinement (AMR) methods have now become routine in engineering and science. Originally developed for computational fluid dynamics applications these methods have propagated to fields as diverse as astrophysics, climate modeling, combustion, biophysics and many others. The underlying physical models and equations used in these disciplines are rather different, yet algorithmic and implementation issues facing practitioners are often remarkably similar. Unfortunately, there has been little effort to review the advances and outstanding issues of adaptive mesh refinement methods across such a variety of fields. This book attempts to bridge this gap. The book presents a collection of papers by experts in the field of AMR who analyze past advances in the field and evaluate the current state of adaptive mesh refinement methods in scientific computing.
Adaptive High-order Methods in Computational Fluid Dynamics
Title | Adaptive High-order Methods in Computational Fluid Dynamics PDF eBook |
Author | Z. J. Wang |
Publisher | World Scientific |
Pages | 471 |
Release | 2011 |
Genre | Science |
ISBN | 9814313181 |
This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.
The Finite Volume Method in Computational Fluid Dynamics
Title | The Finite Volume Method in Computational Fluid Dynamics PDF eBook |
Author | F. Moukalled |
Publisher | Springer |
Pages | 799 |
Release | 2015-08-13 |
Genre | Technology & Engineering |
ISBN | 3319168746 |
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.
Advances in Adaptive Computational Methods in Mechanics
Title | Advances in Adaptive Computational Methods in Mechanics PDF eBook |
Author | P. Ladeveze |
Publisher | Elsevier |
Pages | 539 |
Release | 1998-06-23 |
Genre | Computers |
ISBN | 0080525938 |
Mastering modelling, and in particular numerical models, is becoming a crucial and central question in modern computational mechanics. Various tools, able to quantify the quality of a model with regard to another one taken as the reference, have been derived. Applied to computational strategies, these tools lead to new computational methods which are called "adaptive". The present book is concerned with outlining the state of the art and the latest advances in both these important areas.Papers are selected from a Workshop (Cachan 17-19 September 1997) which is the third of a series devoted to Error Estimators and Adaptivity in Computational Mechanics. The Cachan Workshop dealt with latest advances in adaptive computational methods in mechanics and their impacts on solving engineering problems. It was centered too on providing answers to simple questions such as: what is being used or can be used at present to solve engineering problems? What should be the state of art in the year 2000? What are the new questions involving error estimators and their applications?
Parallel Computational Fluid Dynamics 2002
Title | Parallel Computational Fluid Dynamics 2002 PDF eBook |
Author | K. Matsuno |
Publisher | Elsevier |
Pages | 621 |
Release | 2003-04-25 |
Genre | Technology & Engineering |
ISBN | 0080538428 |
This volume is proceedings of the international conference of the Parallel Computational Fluid Dynamics 2002. In the volume, up-to-date information about numerical simulations of flows using parallel computers is given by leading researchers in this field. Special topics are "Grid Computing" and "Earth Simulator". Grid computing is now the most exciting topic in computer science. An invited paper on grid computing is presented in the volume. The Earth-Simulator is now the fastest computer in the world. Papers on flow-simulations using the Earth-Simulator are also included, as well as a thirty-two page special tutorial article on numerical optimization.
Cartesian CFD Methods for Complex Applications
Title | Cartesian CFD Methods for Complex Applications PDF eBook |
Author | Ralf Deiterding |
Publisher | Springer Nature |
Pages | 144 |
Release | 2021-04-03 |
Genre | Mathematics |
ISBN | 3030617610 |
This volume collects the most important contributions from four minisymposia from ICIAM 2019. The papers highlight cutting-edge applications of Cartesian CFD methods and describe the employed algorithms and numerical schemes. An emphasis is laid on complex multi-physics applications like magnetohydrodynamics, combustion, aerodynamics with fluid-structure interaction, solved with various discretizations, e.g. finite difference, finite volume, multiresolution or lattice Boltzmann CFD schemes. Software design aspects and parallelization challenges are also considered. The book is addressed to graduate students and scientists in the fields of applied mathematics and computational engineering.
Principles of Magnetohydrodynamics
Title | Principles of Magnetohydrodynamics PDF eBook |
Author | J. P. Goedbloed |
Publisher | Cambridge University Press |
Pages | 644 |
Release | 2004-08-05 |
Genre | Science |
ISBN | 9780521626071 |
This textbook provides a modern and accessible introduction to magnetohydrodynamics (MHD). It describes the two main applications of plasma physics, laboratory research on thermo-nuclear fusion energy and plasma astrophysics of the solar system, stars and accretion disks, from the single viewpoint of MHD. This approach provides effective methods and insights for the interpretation of plasma phenomena on virtually all scales, from the laboratory to the universe. It equips the reader with the necessary tools to understand the complexities of plasma dynamics in extended magnetic structures. The classical MHD model is developed in detail without omitting steps in the derivations and problems are included at the end of each chapter. This text is ideal for senior-level undergraduate and graduate courses in plasma physics and astrophysics.