Adaptive Markov Control Processes
Title | Adaptive Markov Control Processes PDF eBook |
Author | Onesimo Hernandez-Lerma |
Publisher | Springer Science & Business Media |
Pages | 160 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1441987142 |
This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.
Adaptive Markov Control Processes
Title | Adaptive Markov Control Processes PDF eBook |
Author | Onésimo Hernández-Lerma |
Publisher | |
Pages | 190 |
Release | 1989 |
Genre | Adaptive control systems |
ISBN |
Markov Processes and Controlled Markov Chains
Title | Markov Processes and Controlled Markov Chains PDF eBook |
Author | Zhenting Hou |
Publisher | Springer Science & Business Media |
Pages | 501 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 146130265X |
The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South American and Asian scholars.
Mathematical Theory of Adaptive Control
Title | Mathematical Theory of Adaptive Control PDF eBook |
Author | Vladimir G. Sragovich |
Publisher | World Scientific |
Pages | 490 |
Release | 2006 |
Genre | Mathematics |
ISBN | 9812701036 |
The theory of adaptive control is concerned with construction of strategies so that the controlled system behaves in a desirable way, without assuming the complete knowledge of the system. The models considered in this comprehensive book are of Markovian type. Both partial observation and partial information cases are analyzed. While the book focuses on discrete time models, continuous time ones are considered in the final chapter. The book provides a novel perspective by summarizing results on adaptive control obtained in the Soviet Union, which are not well known in the West. Comments on the interplay between the Russian and Western methods are also included.
Optimization, Control, and Applications of Stochastic Systems
Title | Optimization, Control, and Applications of Stochastic Systems PDF eBook |
Author | Daniel Hernández-Hernández |
Publisher | Springer Science & Business Media |
Pages | 331 |
Release | 2012-08-15 |
Genre | Science |
ISBN | 0817683372 |
This volume provides a general overview of discrete- and continuous-time Markov control processes and stochastic games, along with a look at the range of applications of stochastic control and some of its recent theoretical developments. These topics include various aspects of dynamic programming, approximation algorithms, and infinite-dimensional linear programming. In all, the work comprises 18 carefully selected papers written by experts in their respective fields. Optimization, Control, and Applications of Stochastic Systems will be a valuable resource for all practitioners, researchers, and professionals in applied mathematics and operations research who work in the areas of stochastic control, mathematical finance, queueing theory, and inventory systems. It may also serve as a supplemental text for graduate courses in optimal control and dynamic games.
Stochastic Systems
Title | Stochastic Systems PDF eBook |
Author | P. R. Kumar |
Publisher | SIAM |
Pages | 371 |
Release | 2015-12-15 |
Genre | Mathematics |
ISBN | 1611974259 |
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.
Zero-Sum Discrete-Time Markov Games with Unknown Disturbance Distribution
Title | Zero-Sum Discrete-Time Markov Games with Unknown Disturbance Distribution PDF eBook |
Author | J. Adolfo Minjárez-Sosa |
Publisher | Springer Nature |
Pages | 129 |
Release | 2020-01-27 |
Genre | Mathematics |
ISBN | 3030357201 |
This SpringerBrief deals with a class of discrete-time zero-sum Markov games with Borel state and action spaces, and possibly unbounded payoffs, under discounted and average criteria, whose state process evolves according to a stochastic difference equation. The corresponding disturbance process is an observable sequence of independent and identically distributed random variables with unknown distribution for both players. Unlike the standard case, the game is played over an infinite horizon evolving as follows. At each stage, once the players have observed the state of the game, and before choosing the actions, players 1 and 2 implement a statistical estimation process to obtain estimates of the unknown distribution. Then, independently, the players adapt their decisions to such estimators to select their actions and construct their strategies. This book presents a systematic analysis on recent developments in this kind of games. Specifically, the theoretical foundations on the procedures combining statistical estimation and control techniques for the construction of strategies of the players are introduced, with illustrative examples. In this sense, the book is an essential reference for theoretical and applied researchers in the fields of stochastic control and game theory, and their applications.