Adaptive Control with Recurrent High-order Neural Networks

Adaptive Control with Recurrent High-order Neural Networks
Title Adaptive Control with Recurrent High-order Neural Networks PDF eBook
Author George A. Rovithakis
Publisher Springer Science & Business Media
Pages 203
Release 2012-12-06
Genre Computers
ISBN 1447107853

Download Adaptive Control with Recurrent High-order Neural Networks Book in PDF, Epub and Kindle

The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.

Artificial Higher Order Neural Networks for Modeling and Simulation

Artificial Higher Order Neural Networks for Modeling and Simulation
Title Artificial Higher Order Neural Networks for Modeling and Simulation PDF eBook
Author Zhang, Ming
Publisher IGI Global
Pages 455
Release 2012-10-31
Genre Computers
ISBN 1466621761

Download Artificial Higher Order Neural Networks for Modeling and Simulation Book in PDF, Epub and Kindle

"This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications
Title Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications PDF eBook
Author Zhang, Ming
Publisher IGI Global
Pages 660
Release 2010-02-28
Genre Computers
ISBN 1615207120

Download Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications Book in PDF, Epub and Kindle

"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.

System Identification and Adaptive Control

System Identification and Adaptive Control
Title System Identification and Adaptive Control PDF eBook
Author Yiannis Boutalis
Publisher Springer Science & Business
Pages 316
Release 2014-04-23
Genre Technology & Engineering
ISBN 3319063642

Download System Identification and Adaptive Control Book in PDF, Epub and Kindle

Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.

Discrete-Time High Order Neural Control

Discrete-Time High Order Neural Control
Title Discrete-Time High Order Neural Control PDF eBook
Author Edgar N. Sanchez
Publisher Springer
Pages 116
Release 2008-06-24
Genre Technology & Engineering
ISBN 3540782893

Download Discrete-Time High Order Neural Control Book in PDF, Epub and Kindle

Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.

Applications of Neural Adaptive Control Technology

Applications of Neural Adaptive Control Technology
Title Applications of Neural Adaptive Control Technology PDF eBook
Author Jens Kalkkuhl
Publisher World Scientific
Pages 328
Release 1997
Genre Technology & Engineering
ISBN 9789810231514

Download Applications of Neural Adaptive Control Technology Book in PDF, Epub and Kindle

This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.

Applied Artificial Higher Order Neural Networks for Control and Recognition

Applied Artificial Higher Order Neural Networks for Control and Recognition
Title Applied Artificial Higher Order Neural Networks for Control and Recognition PDF eBook
Author Zhang, Ming
Publisher IGI Global
Pages 538
Release 2016-05-05
Genre Computers
ISBN 1522500642

Download Applied Artificial Higher Order Neural Networks for Control and Recognition Book in PDF, Epub and Kindle

In recent years, Higher Order Neural Networks (HONNs) have been widely adopted by researchers for applications in control signal generating, pattern recognition, nonlinear recognition, classification, and predition of control and recognition scenarios. Due to the fact that HONNs have been proven to be faster, more accurate, and easier to explain than traditional neural networks, their applications are limitless. Applied Artificial Higher Order Neural Networks for Control and Recognition explores the ways in which higher order neural networks are being integrated specifically for intelligent technology applications. Emphasizing emerging research, practice, and real-world implementation, this timely reference publication is an essential reference source for researchers, IT professionals, and graduate-level computer science and engineering students.