Adaptive Control of Parabolic PDEs

Adaptive Control of Parabolic PDEs
Title Adaptive Control of Parabolic PDEs PDF eBook
Author Andrey Smyshlyaev
Publisher Princeton University Press
Pages 344
Release 2010-07-01
Genre Mathematics
ISBN 1400835364

Download Adaptive Control of Parabolic PDEs Book in PDF, Epub and Kindle

This book introduces a comprehensive methodology for adaptive control design of parabolic partial differential equations with unknown functional parameters, including reaction-convection-diffusion systems ubiquitous in chemical, thermal, biomedical, aerospace, and energy systems. Andrey Smyshlyaev and Miroslav Krstic develop explicit feedback laws that do not require real-time solution of Riccati or other algebraic operator-valued equations. The book emphasizes stabilization by boundary control and using boundary sensing for unstable PDE systems with an infinite relative degree. The book also presents a rich collection of methods for system identification of PDEs, methods that employ Lyapunov, passivity, observer-based, swapping-based, gradient, and least-squares tools and parameterizations, among others. Including a wealth of stimulating ideas and providing the mathematical and control-systems background needed to follow the designs and proofs, the book will be of great use to students and researchers in mathematics, engineering, and physics. It also makes a valuable supplemental text for graduate courses on distributed parameter systems and adaptive control.

Boundary Control of PDEs

Boundary Control of PDEs
Title Boundary Control of PDEs PDF eBook
Author Miroslav Krstic
Publisher SIAM
Pages 197
Release 2008-01-01
Genre Mathematics
ISBN 0898718600

Download Boundary Control of PDEs Book in PDF, Epub and Kindle

The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.

Adaptive Control of Hyperbolic PDEs

Adaptive Control of Hyperbolic PDEs
Title Adaptive Control of Hyperbolic PDEs PDF eBook
Author Henrik Anfinsen
Publisher Springer
Pages 478
Release 2019-02-21
Genre Technology & Engineering
ISBN 3030058794

Download Adaptive Control of Hyperbolic PDEs Book in PDF, Epub and Kindle

Adaptive Control of Linear Hyperbolic PDEs provides a comprehensive treatment of adaptive control of linear hyperbolic systems, using the backstepping method. It develops adaptive control strategies for different combinations of measurements and actuators, as well as for a range of different combinations of parameter uncertainty. The book treats boundary control of systems of hyperbolic partial differential equations (PDEs) with uncertain parameters. The authors develop designs for single equations, as well as any number of coupled equations. The designs are accompanied by mathematical proofs, which allow the reader to gain insight into the technical challenges associated with adaptive control of hyperbolic PDEs, and to get an overview of problems that are still open for further research. Although stabilization of unstable systems by boundary control and boundary sensing are the particular focus, state-feedback designs are also presented. The book also includes simulation examples with implementational details and graphical displays, to give readers an insight into the performance of the proposed control algorithms, as well as the computational details involved. A library of MATLAB® code supplies ready-to-use implementations of the control and estimation algorithms developed in the book, allowing readers to tailor controllers for cases of their particular interest with little effort. These implementations can be used for many different applications, including pipe flows, traffic flow, electrical power lines, and more. Adaptive Control of Linear Hyperbolic PDEs is of value to researchers and practitioners in applied mathematics, engineering and physics; it contains a rich set of adaptive control designs, including mathematical proofs and simulation demonstrations. The book is also of interest to students looking to expand their knowledge of hyperbolic PDEs.

Control of Higher–Dimensional PDEs

Control of Higher–Dimensional PDEs
Title Control of Higher–Dimensional PDEs PDF eBook
Author Thomas Meurer
Publisher Springer Science & Business Media
Pages 373
Release 2012-08-13
Genre Technology & Engineering
ISBN 3642300154

Download Control of Higher–Dimensional PDEs Book in PDF, Epub and Kindle

This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smart elastic structures - the generalization of flatness-based trajectory planning and feedforward control to parabolic and biharmonic PDE systems defined on general higher-dimensional domains - an extension of the backstepping approach to the feedback control and observer design for parabolic PDEs with parallelepiped domain and spatially and time varying parameters - the development of design techniques to realize exponentially stabilizing tracking control - the evaluation in simulations and experiments Control of Higher-Dimensional PDEs — Flatness and Backstepping Designs is an advanced research monograph for graduate students in applied mathematics, control theory, and related fields. The book may serve as a reference to recent developments for researchers and control engineers interested in the analysis and control of systems governed by PDEs.

Input-to-State Stability for PDEs

Input-to-State Stability for PDEs
Title Input-to-State Stability for PDEs PDF eBook
Author Iasson Karafyllis
Publisher Springer
Pages 296
Release 2018-06-07
Genre Technology & Engineering
ISBN 3319910116

Download Input-to-State Stability for PDEs Book in PDF, Epub and Kindle

This book lays the foundation for the study of input-to-state stability (ISS) of partial differential equations (PDEs) predominantly of two classes—parabolic and hyperbolic. This foundation consists of new PDE-specific tools. In addition to developing ISS theorems, equipped with gain estimates with respect to external disturbances, the authors develop small-gain stability theorems for systems involving PDEs. A variety of system combinations are considered: PDEs (of either class) with static maps; PDEs (again, of either class) with ODEs; PDEs of the same class (parabolic with parabolic and hyperbolic with hyperbolic); and feedback loops of PDEs of different classes (parabolic with hyperbolic). In addition to stability results (including ISS), the text develops existence and uniqueness theory for all systems that are considered. Many of these results answer for the first time the existence and uniqueness problems for many problems that have dominated the PDE control literature of the last two decades, including—for PDEs that include non-local terms—backstepping control designs which result in non-local boundary conditions. Input-to-State Stability for PDEs will interest applied mathematicians and control specialists researching PDEs either as graduate students or full-time academics. It also contains a large number of applications that are at the core of many scientific disciplines and so will be of importance for researchers in physics, engineering, biology, social systems and others.

Boundary Control of Parabolic PDE Using Adaptive Dynamic Programming

Boundary Control of Parabolic PDE Using Adaptive Dynamic Programming
Title Boundary Control of Parabolic PDE Using Adaptive Dynamic Programming PDF eBook
Author Behzad Talaei
Publisher
Pages 188
Release 2016
Genre Differential equations, Parabolic
ISBN

Download Boundary Control of Parabolic PDE Using Adaptive Dynamic Programming Book in PDF, Epub and Kindle

"In this dissertation, novel adaptive/approximate dynamic programming (ADP) based state and output feedback control methods are presented for distributed parameter systems (DPS) which are expressed as uncertain parabolic partial differential equations (PDEs) in one and two dimensional domains. In the first step, the output feedback control design using an early lumping method is introduced after model reduction. Subsequently controllers were developed in four stages; Unlike current approaches in the literature, state and output feedback approaches were designed without utilizing model reduction for uncertain linear, coupled nonlinear and two-dimensional parabolic PDEs, respectively. In all of these techniques, the infinite horizon cost function was considered and controller design was obtained in a forward-in-time and online manner without solving the algebraic Riccati equation (ARE) or using value and policy iterations techniques. Providing the stability analysis in the original infinite dimensional domain was a major challenge. Using Lyapunov criterion, the ultimate boundedness (UB) result was demonstrated for the regulation of closed-loop system using all the techniques developed herein. Moreover, due to distributed and large scale nature of state space, pure state feedback control design for DPS has proven to be practically obsolete. Therefore, output feedback design using limited point sensors in the domain or at boundaries are introduced. In the final two papers, the developed state feedback ADP control method was extended to regulate multi-dimensional and more complicated nonlinear parabolic PDE dynamics"--Abstract, page iv.

Delay-Adaptive Linear Control

Delay-Adaptive Linear Control
Title Delay-Adaptive Linear Control PDF eBook
Author Yang Zhu
Publisher Princeton University Press
Pages 354
Release 2020-04-28
Genre Mathematics
ISBN 0691202540

Download Delay-Adaptive Linear Control Book in PDF, Epub and Kindle

Basic predictor feedback for single-input systems -- Basic idea of adaptive control for single-input systems -- Single-input systems with full relative degree -- Single-input systems with arbitrary relative degree -- Exact predictor feedback for multi-input systems -- Full-state feedback of uncertain multi-input systems -- Output feedback of uncertain multi-input systems -- Output feedback of systems with uncertain delays, parameters and ODE state -- Predictor feedback for uncertainty-free systems -- Predictor feedback of uncertain single-input systems -- Predictor feedback of uncertain multi-input systems.