Active Plasmonics and Tuneable Plasmonic Metamaterials

Active Plasmonics and Tuneable Plasmonic Metamaterials
Title Active Plasmonics and Tuneable Plasmonic Metamaterials PDF eBook
Author Anatoly V. Zayats
Publisher John Wiley & Sons
Pages 266
Release 2013-05-22
Genre Science
ISBN 111863442X

Download Active Plasmonics and Tuneable Plasmonic Metamaterials Book in PDF, Epub and Kindle

This book, edited by two of the most respected researchers in plasmonics, gives an overview of the current state in plasmonics and plasmonic-based metamaterials, with an emphasis on active functionalities and an eye to future developments. This book is multifunctional, useful for newcomers and scientists interested in applications of plasmonics and metamaterials as well as for established researchers in this multidisciplinary area.

Plasmonics and Plasmonic Metamaterials

Plasmonics and Plasmonic Metamaterials
Title Plasmonics and Plasmonic Metamaterials PDF eBook
Author G. Shvets
Publisher World Scientific
Pages 469
Release 2012
Genre Science
ISBN 9814355283

Download Plasmonics and Plasmonic Metamaterials Book in PDF, Epub and Kindle

Manipulation of plasmonics from nano to micro scale. 1. Introduction. 2. Form-Birefringent metal and its plasmonic anisotropy. 3. Plasmonic photonic crystal. 4. Fourier plasmonics. 5. Nanoscale optical field localization. 6. Conclusions and outlook -- 11. Dielectric-loaded plasmonic waveguide components. 1. Introduction. 2. Design of waveguide dimensions. 3. Sample preparation and near-field characterization. 4. Excitation and propagation of guided modes. 5. Waveguide bends and splitters. 6. Coupling between waveguides. 7. Waveguide-ring resonators. 8. Bragg gratings. 9. Discussion-- 12. Manipulating nanoparticles and enhancing spectroscopy with surface plasmons. 1. Introduction. 2. Propulsion of gold nanoparticles with surface plasmon polaritons. 3. Double resonance substrates for surface-enhanced raman spectroscopy. 4. Conclusions and outlook -- 13. Analysis of light scattering by nanoobjects on a plane surface via discrete sources method. 1. Introduction. 2. Light scattering by a nanorod. 3. Light scattering by a nanoshell. 4. Summary -- 14. Computational techniques for plasmonic antennas and waveguides. 1. Introduction. 2. Time domain solvers. 3. Frequency domain solvers. 4. Plasmonic antennas. 5. Plasmonic waveguides. 6. Advanced structures. 7. Conclusions

Plasmonic Materials and Metastructures

Plasmonic Materials and Metastructures
Title Plasmonic Materials and Metastructures PDF eBook
Author Shangjr Gwo
Publisher Elsevier
Pages 347
Release 2023-09-11
Genre Technology & Engineering
ISBN 0323860184

Download Plasmonic Materials and Metastructures Book in PDF, Epub and Kindle

Plasmonic Materials and Metastructures: Fundamentals, Current Status, and Perspectives reviews the current status and emerging trends in the development of conventional and alternative plasmonic materials. Sections cover fundamentals and emerging trends of plasmonic materials development, including synthesis strategies (chemical and physical) and optical characterization techniques. Next, the book addresses fundamentals, properties, remaining barriers for commercial translation, and the latest advances and opportunities for conventional noble metal plasmonic materials. Fundamentals and advances for alternative plasmonic materials are also reviewed, including two-dimensional hybrid materials composed of graphene, monolayer transition metal dichalcogenides, boron nitride, etc. In addition, other sections cover applications of plasmonic metastructures enabled by plasmonic materials with improved material properties and newly discovered functionalities. Applications reviewed include quantum plasmonics, topological plasmonics, chiral plasmonics, nanolasers, imaging (metalens), active, and integrated technologies. Provides an overview of materials properties, characterization and fabrication techniques for plasmonic metastructured materials Includes key concepts and advances for a wide range of metastructured materials, including metamaterials, metasurfaces and epsilon-near-zero plasmonic metastructures Discusses emerging applications and barriers to commercial translation for quantum plasmonics, topological plasmonics, nanolasers, imaging and integrated technologies

Plasmonic Metamaterials for Active and Passive Light Control

Plasmonic Metamaterials for Active and Passive Light Control
Title Plasmonic Metamaterials for Active and Passive Light Control PDF eBook
Author Danyong Dylan Lu
Publisher
Pages 112
Release 2014
Genre
ISBN 9781321234145

Download Plasmonic Metamaterials for Active and Passive Light Control Book in PDF, Epub and Kindle

Fundamental study on plasmonics excites surface plasmons opening possibility for stronger light-matter interaction at nanoscales and optical frequencies. On the other hand, metamaterials, known as artificial materials built with designable subwavelength units, offer unprecedented new material properties not existing in nature. By combining unique advantages in these two areas, plasmonic metamaterials gain tremendous momentum for fundamental research interest and potential practical applications through the active and passive interaction with and control of light. This thesis is focused on the theoretical and experimental study of plasmonic metamaterials with tunable plasmonic properties, and their applications in controlling spontaneous emission process of quantum emitters, and manipulating light propagation, scattering and absorption. To break the limitation of surface plasmon properties by existing metal materials, composite- and multilayer-based metamaterials are investigated and their tunable plasmonic properties are demonstrated. Nanopatterned multilayer metamaterials with hyperbolic dispersion relations are further utilized to enhance spontaneous emission rates of molecules at desired frequencies with improved far-field radiative power through the Purcell effect. Theoretical calculations and experimental lifetime characterizations show the tunable broadband Purcell enhancement of 76 fold on the hyperbolic metamaterials that better aligns with spontaneous emission spectra and the emission intensity improvement of 80 fold achieved by the out-coupling effect of nanopatterns. This concept is later applied to quantum-well light emitting devices for improving the light efficiency and modulation speed at blue and green wavelengths. On the passive light manipulation, in contrast to strong plasmonic scattering from metal patterns, anomalously weak scattering by patterns in multilayer hyperbolic metamaterials is observed and experimentally demonstrated to be insensitive to pattern sizes, shapes and incident angles, and has potential applications in scattering cross-section engineering, optical encryption, low-observable conductive probes and opto-electric devices. Lastly, the concept of metamaterials is also extended to selective control of light absorption and reflection for potential solar energy applications. A high-performance spectrally selective coating based on multi-scaled metamaterials is designed and fabricated with 90-95% solar absorptivity and

Active Plasmonics and Metamaterials

Active Plasmonics and Metamaterials
Title Active Plasmonics and Metamaterials PDF eBook
Author Mohamed ElKabbash
Publisher
Pages 186
Release 2017
Genre Metamaterials
ISBN

Download Active Plasmonics and Metamaterials Book in PDF, Epub and Kindle

The past two decades has seen considerable interest in Plasmonics and Metamaterials (P & MM); two intertwined fields of research. The interest is driven by matured nano-fabrication and characterization technologies and the limitations facing traditional photonics. While light cannot be squeezed beyond the diffraction limit, extreme light-matter interactions enabled the manipulation of light at length-scales much shorter than the wavelength of light. The prospects of plasmonics and metamaterials include subwavelength nano-photonic interconnects and circuits, light harvesting and solar energy, enhancement of linear and non-linear optical processes, sensing, ultrathin optical displays, structural coloring and quantum information and communication.The field of plasmonics studies all aspects related to structures that can support plasmons; oscillations of free electrons in metals. From this perspective, one can consider plasmonics as the field of metal photonics that studies light-metal interaction in the optical range. Metals are not subject to the diffraction limit since light is confined by coupling to electron oscillations, or plasmons, in the metal. Electromagnetic (EM) field can thus be confined on length scales comparable to the dimensions of the metallic nanostructure. On the other hand, Metamaterials are engineered materials that enjoy optical properties and functionalities beyond what natural materials can provide. Usually metamaterials are composed of different materials or structures that interact with light resulting in an emergent property due to the interplay of all the component materials and/or structures. In the optical range (visible and NIR), metamaterials heavily rely on metallic nano-structures as they allow for strong light-matter interaction at the sub-wavelength range. The strong field localization, however, comes at a cost; electrons scatter and absorb the localized field at the femtosecond timescale. The problem of strong optical losses in plasmonics and metamaterials with metal components is the major obstacle in applications and devices that require high efficiency, e.g. perfect lenses, clocking devices, and plasmonic transistors and interconnects. The confinement-loss tradeoff is what defines the future of P & MM [1]. As the field of plasmonics and metamaterials mature, the possible applications are adapting to the fundamental limitations of metal photonic materials. In addition to traditional, low efficiency applications of plasmonics, e.g., surface enhanced Raman spectroscopy (SERS), other applications that does not require high efficiency, e.g., metal enhanced fluorescence and plasmonic rulers are promising. Furthermore, losses can be desirable in applications that require strong light absorption and/or heat generation such as thermo-photovoltaics, solar energy generation, thermal emitters, optical absorbers and structural coloring, cancer photo-thermal therapy, and heat assisted magnetic recording.Between low efficiency applications and applications where losses are desirable, one can envision a wide array of applications where the benefits of field confinement out-weigh the losses. In particular, an important consequence of strong field confinement is that changes in the surrounding EM environment can induce a strong change in the optical properties of a P & MM system. Such changes would result in an ultrafast, sub-nanosecond, response that can be useful in many applications. An active P & MM system is one where the existence of an external mechanical, electrical, thermal or optical stimulus modifies the system’s light-matter interaction. This thesis aims to explore various active P & MM systems. To design an active system one needs first to create a passive system that enjoys a certain feature which is a function of the EM environment. By introducing a change in the EM environment, we obtain a measurable change in the passive feature. The first part deals with active plasmonics, particularly, gain-plasmon dynamics. We study the ultrafast dynamics of gain-plasmon interaction and reveal an active plasmonic system where the spontaneous emission rate of a quantum emitter is dynamically modulated. The main objective of this thesis is to slightly uncover the richness of P & MM despite the existence of strong losses and beyond the traditional or loss-based applications. The second part of the thesis deals with metamaterials that exhibit tunable, strong to perfect light absorption and their application in hydrogen gas sensing as an example for their optical activity.

World Scientific Handbook Of Metamaterials And Plasmonics (In 4 Volumes)

World Scientific Handbook Of Metamaterials And Plasmonics (In 4 Volumes)
Title World Scientific Handbook Of Metamaterials And Plasmonics (In 4 Volumes) PDF eBook
Author Stefan A Maier
Publisher World Scientific
Pages 2001
Release 2017-10-12
Genre Science
ISBN 9813228741

Download World Scientific Handbook Of Metamaterials And Plasmonics (In 4 Volumes) Book in PDF, Epub and Kindle

Metamaterials represent a new emerging innovative field of research which has shown rapid acceleration over the last couple of years. In this handbook, we present the richness of the field of metamaterials in its widest sense, describing artificial media with sub-wavelength structure for control over wave propagation in four volumes.Volume 1 focuses on the fundamentals of electromagnetic metamaterials in all their richness, including metasurfaces and hyperbolic metamaterials. Volume 2 widens the picture to include elastic, acoustic, and seismic systems, whereas Volume 3 presents nonlinear and active photonic metamaterials. Finally, Volume 4 includes recent progress in the field of nanoplasmonics, used extensively for the tailoring of the unit cell response of photonic metamaterials.In its totality, we hope that this handbook will be useful for a wide spectrum of readers, from students to active researchers in industry, as well as teachers of advanced courses on wave propagation.

Quantum Photonics: Pioneering Advances and Emerging Applications

Quantum Photonics: Pioneering Advances and Emerging Applications
Title Quantum Photonics: Pioneering Advances and Emerging Applications PDF eBook
Author Robert W. Boyd
Publisher Springer
Pages 646
Release 2019-02-19
Genre Science
ISBN 3319984020

Download Quantum Photonics: Pioneering Advances and Emerging Applications Book in PDF, Epub and Kindle

This book brings together reviews by internationally renowed experts on quantum optics and photonics. It describes novel experiments at the limit of single photons, and presents advances in this emerging research area. It also includes reprints and historical descriptions of some of the first pioneering experiments at a single-photon level and nonlinear optics, performed before the inception of lasers and modern light detectors, often with the human eye serving as a single-photon detector. The book comprises 19 chapters, 10 of which describe modern quantum photonics results, including single-photon sources, direct measurement of the photon's spatial wave function, nonlinear interactions and non-classical light, nanophotonics for room-temperature single-photon sources, time-multiplexed methods for optical quantum information processing, the role of photon statistics in visual perception, light-by-light coherent control using metamaterials, nonlinear nanoplasmonics, nonlinear polarization optics, and ultrafast nonlinear optics in the mid-infrared.