ACM Turing Award Lectures
Title | ACM Turing Award Lectures PDF eBook |
Author | Robert L. Ashenhurst |
Publisher | Association for Computing Machinery (ACM) |
Pages | 546 |
Release | 1987 |
Genre | Computers |
ISBN |
The Deep Learning Revolution
Title | The Deep Learning Revolution PDF eBook |
Author | Terrence J. Sejnowski |
Publisher | MIT Press |
Pages | 354 |
Release | 2018-10-23 |
Genre | Computers |
ISBN | 026203803X |
How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
Principles of Compiler Design
Title | Principles of Compiler Design PDF eBook |
Author | Aho Alfred V |
Publisher | |
Pages | 612 |
Release | 1998 |
Genre | Compilers (Computer programs) |
ISBN | 9788185015613 |
Human-Centered AI
Title | Human-Centered AI PDF eBook |
Author | Ben Shneiderman |
Publisher | Oxford University Press |
Pages | 390 |
Release | 2022 |
Genre | Computers |
ISBN | 0192845292 |
The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity.
The Emotion Machine
Title | The Emotion Machine PDF eBook |
Author | Marvin Minsky |
Publisher | Simon and Schuster |
Pages | 400 |
Release | 2007-11-13 |
Genre | Science |
ISBN | 1416579303 |
In this mind-expanding book, scientific pioneer Marvin Minsky continues his groundbreaking research, offering a fascinating new model for how our minds work. He argues persuasively that emotions, intuitions, and feelings are not distinct things, but different ways of thinking. By examining these different forms of mind activity, Minsky says, we can explain why our thought sometimes takes the form of carefully reasoned analysis and at other times turns to emotion. He shows how our minds progress from simple, instinctive kinds of thought to more complex forms, such as consciousness or self-awareness. And he argues that because we tend to see our thinking as fragmented, we fail to appreciate what powerful thinkers we really are. Indeed, says Minsky, if thinking can be understood as the step-by-step process that it is, then we can build machines -- artificial intelligences -- that not only can assist with our thinking by thinking as we do but have the potential to be as conscious as we are. Eloquently written, The Emotion Machine is an intriguing look into a future where more powerful artificial intelligences await.
Neural Networks and Deep Learning
Title | Neural Networks and Deep Learning PDF eBook |
Author | Charu C. Aggarwal |
Publisher | Springer |
Pages | 512 |
Release | 2018-08-25 |
Genre | Computers |
ISBN | 3319944630 |
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Computing, a Human Activity
Title | Computing, a Human Activity PDF eBook |
Author | Peter Naur |
Publisher | Addison-Wesley Longman |
Pages | 664 |
Release | 1992 |
Genre | Computers |
ISBN |
In this comprehensive anthology Peter Naur, one of the world's foremost computer scientists, presents his selected writings from 1951 to 1990. The book features Naur's original and stimulating reflections on the nature of computing, with perceptive analyses of many issues that remain controversial. Comprising the author's published and unpublished writings on scientific, technical, philosophical, and social aspects of computing, the volume highlights his view of computing as, essentially, a human activity.