Accelerated Materials Discovery

Accelerated Materials Discovery
Title Accelerated Materials Discovery PDF eBook
Author Phil De Luna
Publisher Walter de Gruyter GmbH & Co KG
Pages 215
Release 2022-02-21
Genre Computers
ISBN 3110738082

Download Accelerated Materials Discovery Book in PDF, Epub and Kindle

Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world’s biggest challenges. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs).

Accelerated Materials Discovery

Accelerated Materials Discovery
Title Accelerated Materials Discovery PDF eBook
Author Phil De Luna
Publisher Walter de Gruyter GmbH & Co KG
Pages 235
Release 2022-02-21
Genre Computers
ISBN 3110733250

Download Accelerated Materials Discovery Book in PDF, Epub and Kindle

Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world’s biggest challenges. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs).

Accelerated Materials Discovery

Accelerated Materials Discovery
Title Accelerated Materials Discovery PDF eBook
Author Phil De Luna
Publisher de Gruyter
Pages 312
Release 2022-03-07
Genre
ISBN 9783110738049

Download Accelerated Materials Discovery Book in PDF, Epub and Kindle

Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world's biggest challenges. Highlights artificial intelligence and robotics to speed up the discovery of advanced materials in energy, consumer electronics, and beyond. Describes machine learning algorithms, self-driving labs, AI in catalysis and spectroscopy, and industrial use cases. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs).

Information Science for Materials Discovery and Design

Information Science for Materials Discovery and Design
Title Information Science for Materials Discovery and Design PDF eBook
Author Turab Lookman
Publisher Springer
Pages 316
Release 2015-12-12
Genre Technology & Engineering
ISBN 331923871X

Download Information Science for Materials Discovery and Design Book in PDF, Epub and Kindle

This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.

Artificial Intelligence for Materials Science

Artificial Intelligence for Materials Science
Title Artificial Intelligence for Materials Science PDF eBook
Author Yuan Cheng
Publisher Springer Nature
Pages 231
Release 2021-03-26
Genre Technology & Engineering
ISBN 3030683109

Download Artificial Intelligence for Materials Science Book in PDF, Epub and Kindle

Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.

Computational Materials Discovery

Computational Materials Discovery
Title Computational Materials Discovery PDF eBook
Author Artem Oganov
Publisher Royal Society of Chemistry
Pages 470
Release 2018-10-30
Genre Science
ISBN 1782629610

Download Computational Materials Discovery Book in PDF, Epub and Kindle

A unique and timely book providing an overview of both the methodologies and applications of computational materials design.

Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application

Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application
Title Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application PDF eBook
Author Krishna Rajan
Publisher Butterworth-Heinemann
Pages 542
Release 2017-11-13
Genre Technology & Engineering
ISBN 9780128101216

Download Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application Book in PDF, Epub and Kindle

Materials informatics: a hot topic area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this "quantitative avalanche" and the resulting complex, multi-factor analyses required to understand it means that interest, investment, and research are revisiting informatics approaches as a solution. This work, from Krishna Rajan, the leading expert of the informatics approach to materials, seeks to break down the barriers between data management, quality standards, data mining, exchange, and storage and analysis, as a means of accelerating scientific research in materials science. This solutions-based reference synthesizes foundational physical, statistical, and mathematical content with emerging experimental and real-world applications, for interdisciplinary researchers and those new to the field. Identifies and analyzes interdisciplinary strategies (including combinatorial and high throughput approaches) that accelerate materials development cycle times and reduces associated costs Mathematical and computational analysis aids formulation of new structure-property correlations among large, heterogeneous, and distributed data sets Practical examples, computational tools, and software analysis benefits rapid identification of critical data and analysis of theoretical needs for future problems "