Abelian l-Adic Representations and Elliptic Curves

Abelian l-Adic Representations and Elliptic Curves
Title Abelian l-Adic Representations and Elliptic Curves PDF eBook
Author Jean-Pierre Serre
Publisher CRC Press
Pages 203
Release 1997-11-15
Genre Mathematics
ISBN 1439863865

Download Abelian l-Adic Representations and Elliptic Curves Book in PDF, Epub and Kindle

This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one

p-adic Differential Equations

p-adic Differential Equations
Title p-adic Differential Equations PDF eBook
Author Kiran S. Kedlaya
Publisher Cambridge University Press
Pages 399
Release 2010-06-10
Genre Mathematics
ISBN 1139489208

Download p-adic Differential Equations Book in PDF, Epub and Kindle

Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.

Rational Points on Modular Elliptic Curves

Rational Points on Modular Elliptic Curves
Title Rational Points on Modular Elliptic Curves PDF eBook
Author Henri Darmon
Publisher American Mathematical Soc.
Pages 146
Release 2004
Genre Mathematics
ISBN 0821828681

Download Rational Points on Modular Elliptic Curves Book in PDF, Epub and Kindle

The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.

Topics in Galois Theory

Topics in Galois Theory
Title Topics in Galois Theory PDF eBook
Author Jean-Pierre Serre
Publisher CRC Press
Pages 120
Release 2016-04-19
Genre Mathematics
ISBN 1439865256

Download Topics in Galois Theory Book in PDF, Epub and Kindle

This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi

Arithmetic Theory of Elliptic Curves

Arithmetic Theory of Elliptic Curves
Title Arithmetic Theory of Elliptic Curves PDF eBook
Author J. Coates
Publisher Springer
Pages 269
Release 2006-11-14
Genre Mathematics
ISBN 3540481605

Download Arithmetic Theory of Elliptic Curves Book in PDF, Epub and Kindle

This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.

Modular Functions of One Variable, I-IV

Modular Functions of One Variable, I-IV
Title Modular Functions of One Variable, I-IV PDF eBook
Author Willem Kuyk
Publisher
Pages
Release 1973
Genre Modular functions
ISBN

Download Modular Functions of One Variable, I-IV Book in PDF, Epub and Kindle

Modular Forms and Fermat’s Last Theorem

Modular Forms and Fermat’s Last Theorem
Title Modular Forms and Fermat’s Last Theorem PDF eBook
Author Gary Cornell
Publisher Springer Science & Business Media
Pages 592
Release 2013-12-01
Genre Mathematics
ISBN 1461219744

Download Modular Forms and Fermat’s Last Theorem Book in PDF, Epub and Kindle

This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.