A Variational Approach to Nonsmooth Dynamics

A Variational Approach to Nonsmooth Dynamics
Title A Variational Approach to Nonsmooth Dynamics PDF eBook
Author Samir Adly
Publisher Springer
Pages 168
Release 2018-02-19
Genre Mathematics
ISBN 3319686585

Download A Variational Approach to Nonsmooth Dynamics Book in PDF, Epub and Kindle

This brief examines mathematical models in nonsmooth mechanics and nonregular electrical circuits, including evolution variational inequalities, complementarity systems, differential inclusions, second-order dynamics, Lur'e systems and Moreau's sweeping process. The field of nonsmooth dynamics is of great interest to mathematicians, mechanicians, automatic controllers and engineers. The present volume acknowledges this transversality and provides a multidisciplinary view as it outlines fundamental results in nonsmooth dynamics and explains how to use them to study various problems in engineering. In particular, the author explores the question of how to redefine the notion of dynamical systems in light of modern variational and nonsmooth analysis. With the aim of bridging between the communities of applied mathematicians, engineers and researchers in control theory and nonlinear systems, this brief outlines both relevant mathematical proofs and models in unilateral mechanics and electronics.

Nonsmooth Mechanics

Nonsmooth Mechanics
Title Nonsmooth Mechanics PDF eBook
Author Bernard Brogliato
Publisher Springer Science & Business Media
Pages 565
Release 2012-12-06
Genre Technology & Engineering
ISBN 1447105575

Download Nonsmooth Mechanics Book in PDF, Epub and Kindle

Thank you for opening the second edition of this monograph, which is devoted to the study of a class of nonsmooth dynamical systems of the general form: ::i; = g(x,u) (0. 1) f(x, t) 2: 0 where x E JRn is the system's state vector, u E JRm is the vector of inputs, and the function f (-, . ) represents a unilateral constraint that is imposed on the state. More precisely, we shall restrict ourselves to a subclass of such systems, namely mechanical systems subject to unilateral constraints on the position, whose dynamical equations may be in a first instance written as: ii= g(q,q,u) (0. 2) f(q, t) 2: 0 where q E JRn is the vector of generalized coordinates of the system and u is an in put (or controller) that generally involves a state feedback loop, i. e. u= u(q, q, t, z), with z= Z(z, q, q, t) when the controller is a dynamic state feedback. Mechanical systems composed of rigid bodies interacting fall into this subclass. A general prop erty of systems as in (0. 1) and (0. 2) is that their solutions are nonsmooth (with respect to time): Nonsmoothness arises primarily from the occurence of impacts (or collisions, or percussions) in the dynamical behaviour, when the trajectories attain the surface f(x, t) = O. They are necessary to keep the trajectories within the subspace = {x : f(x, t) 2: O} of the system's state space.

Numerical Methods for Nonsmooth Dynamical Systems

Numerical Methods for Nonsmooth Dynamical Systems
Title Numerical Methods for Nonsmooth Dynamical Systems PDF eBook
Author Vincent Acary
Publisher Springer Science & Business Media
Pages 529
Release 2008-01-30
Genre Technology & Engineering
ISBN 3540753923

Download Numerical Methods for Nonsmooth Dynamical Systems Book in PDF, Epub and Kindle

This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.

Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control

Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control
Title Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control PDF eBook
Author Rafal K. Goebel
Publisher SIAM
Pages 234
Release 2024-06-26
Genre Mathematics
ISBN 1611977983

Download Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control Book in PDF, Epub and Kindle

Set-valued analysis, convex analysis, and nonsmooth analysis are relatively modern branches of mathematical analysis that have become increasingly relevant in current control theory and control engineering literature. This book serves as a broad introduction to analytical tools in these fields and to their applications in dynamical and control systems and is the first to cover these topics with this scope and at this level. Both continuous-time and discrete-time mutlivalued dynamics, modeled by differential and difference inclusions, are considered. Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control: An Introduction is aimed at graduate students in control engineering and applied mathematics and researchers in control engineering who have no prior exposure to set-valued, convex, and nonsmooth analysis. The book will also be of interest to advanced undergraduate mathematics students and mathematicians with no prior exposure to the topic. The expected mathematical background is a course on nonlinear differential equations / dynamical systems and a course on real analysis. Knowledge of some control theory is helpful, but not essential.

Dissipative Systems Analysis and Control

Dissipative Systems Analysis and Control
Title Dissipative Systems Analysis and Control PDF eBook
Author Bernard Brogliato
Publisher Springer
Pages 720
Release 2019-07-03
Genre Technology & Engineering
ISBN 3030194205

Download Dissipative Systems Analysis and Control Book in PDF, Epub and Kindle

This second edition of Dissipative Systems Analysis and Control has been substantially reorganized to accommodate new material and enhance its pedagogical features. It examines linear and nonlinear systems with examples of both in each chapter. Also included are some infinite-dimensional and nonsmooth examples. Throughout, emphasis is placed on the use of the dissipative properties of a system for the design of stable feedback control laws.

Nonlinear Analysis and Global Optimization

Nonlinear Analysis and Global Optimization
Title Nonlinear Analysis and Global Optimization PDF eBook
Author Themistocles M. Rassias
Publisher Springer Nature
Pages 484
Release 2021-02-26
Genre Mathematics
ISBN 3030617327

Download Nonlinear Analysis and Global Optimization Book in PDF, Epub and Kindle

This contributed volume discusses aspects of nonlinear analysis in which optimization plays an important role, as well as topics which are applied to the study of optimization problems. Topics include set-valued analysis, mixed concave-convex sub-superlinear Schroedinger equation, Schroedinger equations in nonlinear optics, exponentially convex functions, optimal lot size under the occurrence of imperfect quality items, generalized equilibrium problems, artificial topologies on a relativistic spacetime, equilibrium points in the restricted three-body problem, optimization models for networks of organ transplants, network curvature measures, error analysis through energy minimization and stability problems, Ekeland variational principles in 2-local Branciari metric spaces, frictional dynamic problems, norm estimates for composite operators, operator factorization and solution of second-order nonlinear difference equations, degenerate Kirchhoff-type inclusion problems, and more.

Mathematical Analysis in Interdisciplinary Research

Mathematical Analysis in Interdisciplinary Research
Title Mathematical Analysis in Interdisciplinary Research PDF eBook
Author Ioannis N. Parasidis
Publisher Springer Nature
Pages 1050
Release 2022-03-10
Genre Mathematics
ISBN 3030847217

Download Mathematical Analysis in Interdisciplinary Research Book in PDF, Epub and Kindle

This contributed volume provides an extensive account of research and expository papers in a broad domain of mathematical analysis and its various applications to a multitude of fields. Presenting the state-of-the-art knowledge in a wide range of topics, the book will be useful to graduate students and researchers in theoretical and applicable interdisciplinary research. The focus is on several subjects including: optimal control problems, optimal maintenance of communication networks, optimal emergency evacuation with uncertainty, cooperative and noncooperative partial differential systems, variational inequalities and general equilibrium models, anisotropic elasticity and harmonic functions, nonlinear stochastic differential equations, operator equations, max-product operators of Kantorovich type, perturbations of operators, integral operators, dynamical systems involving maximal monotone operators, the three-body problem, deceptive systems, hyperbolic equations, strongly generalized preinvex functions, Dirichlet characters, probability distribution functions, applied statistics, integral inequalities, generalized convexity, global hyperbolicity of spacetimes, Douglas-Rachford methods, fixed point problems, the general Rodrigues problem, Banach algebras, affine group, Gibbs semigroup, relator spaces, sparse data representation, Meier-Keeler sequential contractions, hybrid contractions, and polynomial equations. Some of the works published within this volume provide as well guidelines for further research and proposals for new directions and open problems.