A User's Guide to Spectral Sequences ICM Edition

A User's Guide to Spectral Sequences ICM Edition
Title A User's Guide to Spectral Sequences ICM Edition PDF eBook
Author John McCleary
Publisher
Pages
Release 2010-07-23
Genre
ISBN 9780521169974

Download A User's Guide to Spectral Sequences ICM Edition Book in PDF, Epub and Kindle

A User's Guide to Spectral Sequences

A User's Guide to Spectral Sequences
Title A User's Guide to Spectral Sequences PDF eBook
Author John McCleary
Publisher Cambridge University Press
Pages 579
Release 2001
Genre Mathematics
ISBN 0521567599

Download A User's Guide to Spectral Sequences Book in PDF, Epub and Kindle

Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.

Handbook of Algebraic Topology

Handbook of Algebraic Topology
Title Handbook of Algebraic Topology PDF eBook
Author I.M. James
Publisher Elsevier
Pages 1336
Release 1995-07-18
Genre Mathematics
ISBN 0080532985

Download Handbook of Algebraic Topology Book in PDF, Epub and Kindle

Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.

A User's Guide to Spectral Sequences

A User's Guide to Spectral Sequences
Title A User's Guide to Spectral Sequences PDF eBook
Author John McCleary
Publisher Cambridge University Press
Pages 578
Release 2000-11-27
Genre Mathematics
ISBN 9780521567596

Download A User's Guide to Spectral Sequences Book in PDF, Epub and Kindle

Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.

Lectures on Vanishing Theorems

Lectures on Vanishing Theorems
Title Lectures on Vanishing Theorems PDF eBook
Author Esnault
Publisher Springer Science & Business Media
Pages 180
Release 1992-12-01
Genre Science
ISBN 9783764328221

Download Lectures on Vanishing Theorems Book in PDF, Epub and Kindle

Introduction M. Kodaira's vanishing theorem, saying that the inverse of an ample invert ible sheaf on a projective complex manifold X has no cohomology below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre's GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained for projective manifolds over a field k of characteristic p = 0, for a long time no algebraic proof was known and no generalization to p > 0, except for certain lower dimensional manifolds. Worse, counterexamples due to M. Raynaud [52J showed that in characteristic p > 0 some additional assumptions were needed. This was the state of the art until P. Deligne and 1. Illusie [12J proved the degeneration of the Hodge to de Rham spectral sequence for projective manifolds X defined over a field k of characteristic p > 0 and liftable to the second Witt vectors W2(k). Standard degeneration arguments allow to deduce the degeneration of the Hodge to de Rham spectral sequence in characteristic zero, as well, a re sult which again could only be obtained by analytic and differential geometric methods beforehand. As a corollary of their methods M. Raynaud (loc. cit.) gave an easy proof of Kodaira vanishing in all characteristics, provided that X lifts to W2(k).

Topological Modular Forms

Topological Modular Forms
Title Topological Modular Forms PDF eBook
Author Christopher L. Douglas
Publisher American Mathematical Soc.
Pages 353
Release 2014-12-04
Genre Mathematics
ISBN 1470418843

Download Topological Modular Forms Book in PDF, Epub and Kindle

The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.

Notices of the American Mathematical Society

Notices of the American Mathematical Society
Title Notices of the American Mathematical Society PDF eBook
Author American Mathematical Society
Publisher
Pages 962
Release 1988
Genre Mathematics
ISBN

Download Notices of the American Mathematical Society Book in PDF, Epub and Kindle