A Survey of the Hodge Conjecture
Title | A Survey of the Hodge Conjecture PDF eBook |
Author | James D. Lewis |
Publisher | American Mathematical Soc. |
Pages | 386 |
Release | 1999-06-30 |
Genre | Mathematics |
ISBN | 1470428520 |
This book provides an introduction to a topic of central interest in transcendental algebraic geometry: the Hodge conjecture. Consisting of 15 lectures plus addenda and appendices, the volume is based on a series of lectures delivered by Professor Lewis at the Centre de Recherches Mathematiques (CRM). The book is a self-contained presentation, completely devoted to the Hodge conjecture and related topics. It includes many examples, and most results are completely proven or sketched. The motivation behind many of the results and background material is provided. This comprehensive approach to the book gives it a ``user-friendly'' style. Readers need not search elsewhere for various results. The book is suitable for use as a text for a topics course in algebraic geometry; includes an appendix by B. Brent Gordon.
A Survey of the Hodge Conjecture
Title | A Survey of the Hodge Conjecture PDF eBook |
Author | James Dominic Lewis |
Publisher | American Mathematical Soc. |
Pages | 386 |
Release | 1999 |
Genre | Mathematics |
ISBN | 0821805681 |
This book provides an introduction to a topic of central interest in transcendental algebraic geometry: the Hodge conjecture. Consisting of 15 lectures plus addenda and appendices, the volume is based on a series of lectures delivered by Professor Lewis at the Centre de Recherches Mathematiques (CRM). The book is a self-contained presentation, completely devoted to the Hodge conjecture and related topics. It includes many examples, and most results are completely proven or sketched. The motivation behind many of the results and background material is provided. This comprehensive approach to the book gives it a 'user-friendly' style. Readers need not search elsewhere for various results. The book is suitable for use as a text for a topics course in algebraic geometry. It includes an appendix by B. Brent Gordon.
A Survey of the Hodge Conjecture
Title | A Survey of the Hodge Conjecture PDF eBook |
Author | James D. Lewis |
Publisher | American Mathematical Soc. |
Pages | 392 |
Release | |
Genre | Geometry, Algebraic |
ISBN | 9780821869710 |
This book provides an introduction to a topic of central interest in transcendental algebraic geometry: the Hodge conjecture. Consisting of 15 lectures plus addenda and appendices, the volume is based on a series of lectures delivered by Professor Lewis at the Centre de Recherches Mathematiques (CRM). The book is a self-contained presentation, completely devoted to the Hodge conjecture and related topics. It includes many examples, and most results are completely proven or sketched. The motivation behind many of the results and background material is provided. This comprehensive approach to the book gives it a 'user-friendly' style. Readers need not search elsewhere for various results. The book is suitable for use as a text for a topics course in algebraic geometry. It includes an appendix by B. Brent Gordon.
Chow Rings, Decomposition of the Diagonal, and the Topology of Families
Title | Chow Rings, Decomposition of the Diagonal, and the Topology of Families PDF eBook |
Author | Claire Voisin |
Publisher | Princeton University Press |
Pages | 171 |
Release | 2014-02-23 |
Genre | Mathematics |
ISBN | 0691160511 |
In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.
A Course in Hodge Theory
Title | A Course in Hodge Theory PDF eBook |
Author | Hossein Movasati |
Publisher | |
Pages | 0 |
Release | 2021 |
Genre | Hodge theory |
ISBN | 9781571464002 |
Offers an examination of the precursors of Hodge theory: first, the studies of elliptic and abelian integrals by Cauchy, Abel, Jacobi, and Riemann; and then the studies of two-dimensional multiple integrals by Poincare and Picard. The focus turns to the Hodge theory of affine hypersurfaces given by tame polynomials.
Mixed Hodge Structures
Title | Mixed Hodge Structures PDF eBook |
Author | Chris A.M. Peters |
Publisher | Springer Science & Business Media |
Pages | 467 |
Release | 2008-02-27 |
Genre | Mathematics |
ISBN | 3540770178 |
This is comprehensive basic monograph on mixed Hodge structures. Building up from basic Hodge theory the book explains Delingne's mixed Hodge theory in a detailed fashion. Then both Hain's and Morgan's approaches to mixed Hodge theory related to homotopy theory are sketched. Next comes the relative theory, and then the all encompassing theory of mixed Hodge modules. The book is interlaced with chapters containing applications. Three large appendices complete the book.
Hodge Theory
Title | Hodge Theory PDF eBook |
Author | Eduardo Cattani |
Publisher | Princeton University Press |
Pages | 607 |
Release | 2014-07-21 |
Genre | Mathematics |
ISBN | 0691161348 |
This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch-Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck’s algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne’s theorem on absolute Hodge cycles), and variation of mixed Hodge structures. The contributors include Patrick Brosnan, James Carlson, Eduardo Cattani, François Charles, Mark Andrea de Cataldo, Fouad El Zein, Mark L. Green, Phillip A. Griffiths, Matt Kerr, Lê Dũng Tráng, Luca Migliorini, Jacob P. Murre, Christian Schnell, and Loring W. Tu.