A Survey of Minimal Surfaces

A Survey of Minimal Surfaces
Title A Survey of Minimal Surfaces PDF eBook
Author Robert Osserman
Publisher Courier Corporation
Pages 226
Release 1986-01-01
Genre Mathematics
ISBN 0486649989

Download A Survey of Minimal Surfaces Book in PDF, Epub and Kindle

This clear and comprehensive study features 12 sections that discuss parametric and non-parametric surfaces, surfaces that minimize area, isothermal parameters, Bernstein's theorem, minimal surfaces with boundary, and many other topics. This revised edition includes material on minimal surfaces in relativity and topology and updated work on Plateau's problem and isoperimetric inequalities. 1969 edition.

A Course in Minimal Surfaces

A Course in Minimal Surfaces
Title A Course in Minimal Surfaces PDF eBook
Author Tobias Holck Colding
Publisher American Mathematical Society
Pages 330
Release 2024-01-18
Genre Mathematics
ISBN 1470476401

Download A Course in Minimal Surfaces Book in PDF, Epub and Kindle

Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

A Survey on Classical Minimal Surface Theory

A Survey on Classical Minimal Surface Theory
Title A Survey on Classical Minimal Surface Theory PDF eBook
Author William Meeks
Publisher American Mathematical Soc.
Pages 195
Release 2012
Genre Mathematics
ISBN 0821869124

Download A Survey on Classical Minimal Surface Theory Book in PDF, Epub and Kindle

Meeks and Pérez extend their 2011 survey article "The classical theory of Minimal surfaces" in the Bulletin of the American Mathematical Society to include other recent research results. Their topics include minimal surfaces with finite topology and more than one end, limits of embedded minimal surfaces without local area or curvature bounds, conformal structure of minimal surfaces, embedded minimal surfaces of finite genus, topological aspects of minimal surfaces, and Calabi-Yau problems. There is no index. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com).

Regularity of Minimal Surfaces

Regularity of Minimal Surfaces
Title Regularity of Minimal Surfaces PDF eBook
Author Ulrich Dierkes
Publisher Springer Science & Business Media
Pages 634
Release 2010-08-16
Genre Mathematics
ISBN 3642117007

Download Regularity of Minimal Surfaces Book in PDF, Epub and Kindle

Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.

Minimal Surfaces

Minimal Surfaces
Title Minimal Surfaces PDF eBook
Author Ulrich Dierkes
Publisher Springer
Pages 692
Release 2010-10-01
Genre Mathematics
ISBN 9783642116971

Download Minimal Surfaces Book in PDF, Epub and Kindle

Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem and Tomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.

A Survey of Minimal Surfaces

A Survey of Minimal Surfaces
Title A Survey of Minimal Surfaces PDF eBook
Author Robert Osserman
Publisher Courier Corporation
Pages 226
Release 2013-12-10
Genre Mathematics
ISBN 0486167690

Download A Survey of Minimal Surfaces Book in PDF, Epub and Kindle

Newly updated accessible study covers parametric and non-parametric surfaces, isothermal parameters, Bernstein’s theorem, much more, including such recent developments as new work on Plateau’s problem and on isoperimetric inequalities. Clear, comprehensive examination provides profound insights into crucial area of pure mathematics. 1986 edition. Index.

Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces

Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces
Title Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces PDF eBook
Author Richard Courant
Publisher Courier Corporation
Pages 354
Release 2005-01-01
Genre Mathematics
ISBN 0486445526

Download Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces Book in PDF, Epub and Kindle

Originally published: New York: Interscience Publishers, 1950, in series: Pure and applied mathematics (Interscience Publishers); v. 3.