Classical and New Inequalities in Analysis
Title | Classical and New Inequalities in Analysis PDF eBook |
Author | Dragoslav S. Mitrinovic |
Publisher | Springer Science & Business Media |
Pages | 739 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 9401710430 |
This volume presents a comprehensive compendium of classical and new inequalities as well as some recent extensions to well-known ones. Variations of inequalities ascribed to Abel, Jensen, Cauchy, Chebyshev, Hölder, Minkowski, Stefferson, Gram, Fejér, Jackson, Hardy, Littlewood, Po'lya, Schwarz, Hadamard and a host of others can be found in this volume. The more than 1200 cited references include many from the last ten years which appear in a book for the first time. The 30 chapters are all devoted to inequalities associated with a given classical inequality, or give methods for the derivation of new inequalities. Anyone interested in equalities, from student to professional, will find their favorite inequality and much more.
Survey on Classical Inequalities
Title | Survey on Classical Inequalities PDF eBook |
Author | Themistocles RASSIAS |
Publisher | Springer Science & Business Media |
Pages | 241 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 9401143390 |
Survey on Classical Inequalities provides a study of some of the well known inequalities in classical mathematical analysis. Subjects dealt with include: Hardy-Littlewood-type inequalities, Hardy's and Carleman's inequalities, Lyapunov inequalities, Shannon's and related inequalities, generalized Shannon functional inequality, operator inequalities associated with Jensen's inequality, weighted Lp -norm inequalities in convolutions, inequalities for polynomial zeros as well as applications in a number of problems of pure and applied mathematics. It is my pleasure to express my appreciation to the distinguished mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias Vll LYAPUNOV INEQUALITIES AND THEIR APPLICATIONS RICHARD C. BROWN Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA. email address:[email protected] DON B. HINTON Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA. email address: [email protected] Abstract. For nearly 50 years Lyapunov inequalities have been an important tool in the study of differential equations. In this survey, building on an excellent 1991 historical survey by Cheng, we sketch some new developments in the theory of Lyapunov inequalities and present some recent disconjugacy results relating to second and higher order differential equations as well as Hamiltonian systems. 1. Introduction Lyapunov's inequality has proved useful in the study of spectral properties of ordinary differential equations. Typical applications include bounds for eigenvalues, stability criteria for periodic differential equations, and estimates for intervals of disconjugacy.
Operators, Inequalities and Approximation
Title | Operators, Inequalities and Approximation PDF eBook |
Author | Binod Chandra Tripathy |
Publisher | Springer Nature |
Pages | 209 |
Release | |
Genre | |
ISBN | 9819732387 |
Some Gronwall Type Inequalities and Applications
Title | Some Gronwall Type Inequalities and Applications PDF eBook |
Author | Sever Silvestru Dragomir |
Publisher | |
Pages | 210 |
Release | 2003 |
Genre | Mathematics |
ISBN |
Gronwall type integral inequalities of one variable for real functions play a very important role in the Qualitative Theory of Differential Equations. The main aim of the present research monograph is to present some natural applications of Gronwall inequalities with non-linear kernels of Lipschitz type of the problems of boundedness and convergence to zero at infinity of the solutions of certain Volterra integral equations. Stability, uniform stability, uniform asymptotic stability and global asymptotic stability properties for trivial solution of certain differential system of equations are also investigated. Contents: Preface; Integral Inequalities of Gronwall Type; Inequalities for Kernels of (L)-Type; Applications to Integral Equations; Applications to Differential Equations; Index.
Handbook of Means and Their Inequalities
Title | Handbook of Means and Their Inequalities PDF eBook |
Author | P.S. Bullen |
Publisher | Springer Science & Business Media |
Pages | 563 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 940170399X |
There seems to be two types of books on inequalities. On the one hand there are treatises that attempt to cover all or most aspects of the subject, and where an attempt is made to give all results in their best possible form, together with either a full proof or a sketch of the proof together with references to where a full proof can be found. Such books, aimed at the professional pure and applied mathematician, are rare. The first such, that brought some order to this untidy field, is the classical "Inequalities" of Hardy, Littlewood & P6lya, published in 1934. Important as this outstanding work was and still is, it made no attempt at completeness; rather it consisted of the total knowledge of three front rank mathematicians in a field in which each had made fundamental contributions. Extensive as this combined knowledge was there were inevitably certain lacunre; some important results, such as Steffensen's inequality, were not mentioned at all; the works of certain schools of mathematicians were omitted, and many important ideas were not developed, appearing as exercises at the ends of chapters. The later book "Inequalities" by Beckenbach & Bellman, published in 1961, repairs many of these omissions. However this last book is far from a complete coverage of the field, either in depth or scope.
Bounded and Compact Integral Operators
Title | Bounded and Compact Integral Operators PDF eBook |
Author | David E. Edmunds |
Publisher | Springer Science & Business Media |
Pages | 655 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 940159922X |
The monograph presents some of the authors' recent and original results concerning boundedness and compactness problems in Banach function spaces both for classical operators and integral transforms defined, generally speaking, on nonhomogeneous spaces. Itfocuses onintegral operators naturally arising in boundary value problems for PDE, the spectral theory of differential operators, continuum and quantum mechanics, stochastic processes etc. The book may be considered as a systematic and detailed analysis of a large class of specific integral operators from the boundedness and compactness point of view. A characteristic feature of the monograph is that most of the statements proved here have the form of criteria. These criteria enable us, for example, togive var ious explicit examples of pairs of weighted Banach function spaces governing boundedness/compactness of a wide class of integral operators. The book has two main parts. The first part, consisting of Chapters 1-5, covers theinvestigation ofclassical operators: Hardy-type transforms, fractional integrals, potentials and maximal functions. Our main goal is to give a complete description of those Banach function spaces in which the above-mentioned operators act boundedly (com pactly). When a given operator is not bounded (compact), for example in some Lebesgue space, we look for weighted spaces where boundedness (compact ness) holds. We develop the ideas and the techniques for the derivation of appropriate conditions, in terms of weights, which are equivalent to bounded ness (compactness).
Fractional Differential Equations, Inclusions and Inequalities with Applications
Title | Fractional Differential Equations, Inclusions and Inequalities with Applications PDF eBook |
Author | Sotiris K. Ntouyas |
Publisher | MDPI |
Pages | 518 |
Release | 2020-11-09 |
Genre | Mathematics |
ISBN | 3039432184 |
During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering.