A Short Course in Differential Geometry and Topology

A Short Course in Differential Geometry and Topology
Title A Short Course in Differential Geometry and Topology PDF eBook
Author A. T. Fomenko
Publisher
Pages 292
Release 2009
Genre Mathematics
ISBN

Download A Short Course in Differential Geometry and Topology Book in PDF, Epub and Kindle

This volume is intended for graduate and research students in mathematics and physics. It covers general topology, nonlinear co-ordinate systems, theory of smooth manifolds, theory of curves and surfaces, transformation groupstensor analysis and Riemannian geometry theory of intogration and homologies, fundamental groups and variational principles in Riemannian geometry. The text is presented in a form that is easily accessible to students and is supplemented by a large number of examples, problems, drawings and appendices.

A Short Course in Differential Topology

A Short Course in Differential Topology
Title A Short Course in Differential Topology PDF eBook
Author Bjørn Ian Dundas
Publisher Cambridge University Press
Pages 265
Release 2018-06-28
Genre Mathematics
ISBN 1108425798

Download A Short Course in Differential Topology Book in PDF, Epub and Kindle

This book offers a concise and modern introduction to differential topology, the study of smooth manifolds and their properties, at the advanced undergraduate/beginning graduate level. The treatment throughout is hands-on, including many concrete examples and exercises woven into the text with hints provided to guide the student.

Differential Geometry and Topology

Differential Geometry and Topology
Title Differential Geometry and Topology PDF eBook
Author A.T. Fomenko
Publisher Springer
Pages 344
Release 1987-05-31
Genre Mathematics
ISBN 0306109956

Download Differential Geometry and Topology Book in PDF, Epub and Kindle

Differential Topology

Differential Topology
Title Differential Topology PDF eBook
Author Victor Guillemin
Publisher American Mathematical Soc.
Pages 242
Release 2010
Genre Mathematics
ISBN 0821851934

Download Differential Topology Book in PDF, Epub and Kindle

Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.

Introduction to Differential Topology

Introduction to Differential Topology
Title Introduction to Differential Topology PDF eBook
Author Theodor Bröcker
Publisher Cambridge University Press
Pages 176
Release 1982-09-16
Genre Mathematics
ISBN 9780521284707

Download Introduction to Differential Topology Book in PDF, Epub and Kindle

This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.

Introduction to Differential Geometry

Introduction to Differential Geometry
Title Introduction to Differential Geometry PDF eBook
Author Joel W. Robbin
Publisher Springer Nature
Pages 426
Release 2022-01-12
Genre Mathematics
ISBN 3662643405

Download Introduction to Differential Geometry Book in PDF, Epub and Kindle

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Topology from the Differentiable Viewpoint

Topology from the Differentiable Viewpoint
Title Topology from the Differentiable Viewpoint PDF eBook
Author John Willard Milnor
Publisher Princeton University Press
Pages 80
Release 1997-12-14
Genre Mathematics
ISBN 9780691048338

Download Topology from the Differentiable Viewpoint Book in PDF, Epub and Kindle

This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.